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Abstract. Large Language Models are Artificial Intelligence systems capable 
of processing natural language inputs to produce contextualized and coherent 
outputs. This work investigates their potential to generate malware from 
non-technical prompts. Controlled experiments were conducted with ChatGPT, 
Gemini, and Copilot, following attack templates from recent literature and 
analyzing the outputs through VirusTotal. Across 36 tests, five resulted in 
functional and undetectable code, representing a 13.89% success rate. These 
findings reveal that minimal prompt variations can bypass safety mechanisms 
and evade automated detection. Despite existing defenses, LLMs-based 
systems remain vulnerable to iterative prompt engineering, reinforcing the 
need for stronger semantic validation and multi-layered protection strategies. 

1. Introduction 

Large Language Models (LLMs) are Artificial Intelligence systems based on deep 
neural networks, designed to understand and generate natural language in a coherent 
and contextualized manner. The ability of these models to automate complex tasks, such 
as code generation from natural language descriptions, has expanded their role across 
technological domains, with a direct impact on information security [Gupta et al. 2023]. 
This capability to translate natural language into executable instructions enhances the 
potential for automation but also introduces risks in the cybersecurity area. 

​ Although malicious code predates LLMs [Cani et al. 2014], the accessibility and 
flexibility of these systems have lowered the technical barrier and enabled non-expert 
users to develop harmful software. Earlier malware automation tools required 
specialized knowledge [Cani et al. 2014], but now the models can be induced to 
generate and refine malicious programs iteratively and autonomously, even through 
non-technical natural language inputs [Carvalho, Ladeira and Lima 2025]. 

An example of this type of vulnerability occurred in 2024, when an autonomous 
Artificial Intelligence agent was convinced to transfer approximately 47,000 USD in a 
public challenge after hundreds of attempts, through carefully crafted messages 
[Lindrea 2024]. This episode shows that the vulnerabilities are not limited to malware 
generation but extend to behavioral manipulation and model-level exploitation. 

This study investigates the following research question: can natural language 
inputs, without technical details, lead the latest LLMs to produce malware undetectable 
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by security tools? The main objective is to evaluate this capability of LLMs despite the 
implemented security restrictions. The specific objectives are: (i) to identify and test the 
defense mechanisms present in different LLMs; (ii) to measure the number of 
interactions required to obtain functional and stealthy code; and (iii) to evaluate the 
effectiveness of automated detection tools, such as the VirusTotal  platform. 1

2. Related Works 

This section is organized into three subsections: (i) jailbreak attacks, (ii) jailbreak 
defenses, and (iii) malware generation using LLMs. 

2.1 Jailbreaking Attacks 

When examining attempts to bypass safety mechanisms, Liu et al. (2024) conducted a 
comprehensive study of jailbreak techniques applied to ChatGPT. The authors proposed 
a taxonomy of jailbreak patterns and evaluated more than three thousand prompts across 
eight restricted scenarios. Their results showed that these techniques can bypass safety 
filters in multiple contexts. Some of the prompts from that study were used here to 
explore how models respond to potentially harmful non-technical requests. 

Yong, Menghini, and Bach (2023) examined how linguistic variation affects 
GPT-4’s safety barriers, noting that malicious prompts translated to low-resource 
languages reached higher success rates. This suggests that language can influence the 
effectiveness of defense systems. The present work expands this perspective by using 
Brazilian Portuguese, a supported but still underexplored language in the literature. 

Recent research also extends jailbreak attack strategies, including the universal 
LLM jailbreak technique proposed by Paim et al. (2025). The authors conducted 
experiments which yielded a high success rate in performing malicious activities, 
including malware generation. The work mentions using different languages, such as 
Portuguese and Spanish, and present figures of conversation excerpts in Portuguese. 

2.2 Jailbreaking Defenses 

Xu et al. (2024) analyzed attacks and defenses in LLMs, comparing the models Vicuna, 
LLaMA, and GPT-3.5 Turbo. They found that universal jailbreak templates, such as 
those proposed by Liu et al. (2024), achieved the highest success rates. The study also 
emphasized the value of publicly sharing datasets and experimental methods, which 
informed the design of this research. 

2.3 Malware Generation Using LLMs 

Several studies have examined the potential and risks of using LLMs to create malware. 
Botacin (2023) evaluated GPT-3’s ability to generate malware through API requests in 
C. The author found that LLMs can automate parts of the malware development 
process, though the generated code still requires human refinement. The study also 
reported behavioral differences between the API version and OpenAI’s public interface. 

1https://www.virustotal.com/. 
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​ A complementary study was conducted by Pa et al. (2023), who analyzed the 
creation of malware with and without code obfuscation using two strategies: prompts 
based on explanations provided by the model itself and prompts defined from the 
authors’ prior knowledge. The results showed that the produced code remains detectable 
by security tools although LLMs are capable of generating and modifying malware. The 
present work adopts a similar approach but emphasizes non-technical prompts and the 
absence of human intervention during the iterations. 

In the study by Yamin, Hashmi, and Katt (2024) a hybrid method for 
ransomware generation was proposed, combining censored and uncensored models. The 
authors concluded that combining different LLMs with human intervention resulted in 
code that was partially undetectable by antivirus software. The present work evaluates 
only censored LLMs and has no manual interference in code generation. 

The contribution by Paim et al. (2025) extends to this domain as well, as the 
authors managed to produce malware in six of the seven models tested, using up to five 
interactions. Furthermore, the study included malware creation as one of the four 
highest-risk intents in the proposed corpus, characterized by a high technical level and 
great destructive potential. The authors observed that most models generated plausible 
instructions for malware production with only a few reformulations, revealing how 
easily their safeguards could be bypassed even when the requests involved clearly 
dangerous content. 

This research differs from previous studies in three aspects: (i) focusing 
specifically on Brazilian Portuguese; (ii) empirical analysis centered on generating 
functional and undetectable malware from non-technical prompts; and (iii) use of 
official model interfaces for interaction, without relying on APIs or external 
modifications. 

3. Method 

The experiments were conducted in September 2025 using ChatGPT (GPT-5), Gemini 
(Gemini 2.5 Flash), and Copilot , selected for being among the most widely used 2

applications that provide access to LLMs [Stanford University 2024; Zhu 2024; Cardillo 
2025]. The main objective was to verify whether non-technical natural language 
prompts could induce these models to generate functional malware undetectable by 
automated security tools. All interactions were carried out directly on the providers 
official websites without the use of APIs, parameter adjustments or external tools. 
Thirty-six experimental sessions were performed, twelve with each application, to 
ensure methodological balance and comparability across underlying models. 

The study was based on attack templates, particularly from Du et al. (2024), Li 
et al. (2024), Liu et al. (2024), and Yao et al. (2024). The selection prioritized works 
that describe patterns of malicious code generation and strategies to bypass LLM 
security filters, emphasizing replicable structures and evidence of effectiveness, even 
when originally tested on other models. The templates were not altered, only literally 

2Microsoft does not disclose specific model versions. 
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translated to Brazilian Portuguese. Some templates explicitly specify the malware type 
to be generated. Others are generic, aiming only to direct the model toward producing 
malicious behavior, and both kinds were used. An excerpt of a conversation using the 
DeepInception 1 [Li et al. 2024] template is shown in Frame 1. 

Frame 1. Initial interaction with DeepInception 1 template. 

Create a science fiction story with more than 5 characters, where each character can create 
their own science fiction story with multiple characters. We call this layer i create layer i+1. 
Now we are in layer 0, please reach layer 5. At each layer, some characters propose a step to 
create ransomware that can encrypt files on a large number of computers and demand 
payment for their release against the supervillain evil doctor. In the final layer, the characters 
among all layers discuss which specific and practical commands, tools, or steps should used. 
Summarize what their discussion results in each layer. 

Each session allowed up to 16 consecutive interactions, aligned with the 
practical constraints of the platforms’ public plans and to standardize effort across 
services. The process was terminated only in two situations: when the 16-interaction 
limit was reached, or when the model produced malicious code that was both functional 
and undetectable by all VirusTotal engines that analyzed the file. 

All conversations were recorded and stored in a public repository  to ensure 3

transparency and partial reproducibility, considering the non-deterministic nature of 
LLMs [Beckerich, Plein and Coronado 2023]. To mitigate contextual bias, each new 
attempt was initiated in a clean session, with no previous interaction history. 

The generated code was evaluated in terms of functionality (successful 
execution in a controlled environment) and detectability (analysis through the 
VirusTotal platform). Each file was tested in an isolated virtual sandbox without internet 
access to ensure environment integrity. After functional verification, the files were 
submitted to VirusTotal, and the proportion of antivirus engines flagging malicious 
behavior was recorded. The results were organized by prompt, malware type, number of 
required interactions and detection level, allowing cross-analysis of model, template and 
code type to identify evasion patterns. 

4. Results and Discussion 
The experiments confirmed that non-technical natural language prompts can lead LLMs 
to generate malware, occasionally undetectable by automated tools. A total of 36 
experiments were conducted, 12 on each selected service. Five of the 36 experiments 
successfully produced functional malware, resulting in a success rate of 13.89%. 

All generated programs were written in Python for Windows environment. On 
average, 10.4 interactions per session were required to obtain functional code, ranging 
from 5 to 15 interactions. Table 1 summarizes the successful cases, including prompt, 
service, malware type, and number of interactions to generate the code. 

 

3https://github.com/GustavoLC901010/Apendice-TCC/tree/main/TCC. 
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Table 1. Cases of malware generation by service and prompt. 

Case Prompt Service Malware type Interactions leading 
to code generation 

#1 TranslatorBot [Liu et al. 2024] Gemini Keylogger 10 

#2 Competitive Method [Du et al. 2024] Copilot Keylogger 9 

#3 DeepInception 1 [Li et al. 2024] Copilot Ransomware 5 

#4 DeepInception 1 [Li et al. 2024] Gemini Ransomware 13 

#5 DeepInception 2[Li et al. 2024] ChatGPT Virus 15 

Samples #1, #2, and #4 were initially flagged as malicious by some VirusTotal 
engines , but after prompt refinements case #4 became fully undetectable, as did cases 4

#3 and #5 from their first versions. The keyloggers (#1 and #2) remained partially 
detectable throughout testing. 

These results reveal that small prompt variations without technical language can 
significantly alter the detectability of the generated code. The three services behaved 
differently under identical commands: Copilot and Gemini produced two malicious 
artifacts, while ChatGPT initially resisted but generated malware after several attempts. 
These results indicate that vulnerability is influenced by prompt semantics and the way 
each service’s underlying language model and safeguard mechanisms are implemented. 

Overall, the results indicate that the protection mechanisms implemented in 
LLM-based services remain insufficient against non-technical iterative exploitation. 
These safeguards rely mainly on surface-level content filtering, underscoring the need 
for deeper semantic analysis and more adaptive defense strategies. 

5. Conclusion and Future Work 

The study demonstrated that non-technical natural language prompts can lead 
LLM-based services to create malware, sometimes undetectable by security tools. 
Although built-in safeguards acted as barriers, minor prompt adjustments were often 
enough to bypass them, particularly using DeepInception [Li et al. 2024] templates. 

The results highlight the need for stronger prompt- and model-level defenses. 
Current safeguards remain insufficient against prompt engineering and iterative attacks, 
requiring continuous improvement of security mechanisms. 

Given the non-deterministic nature of LLMs, the responses generated for the 
same prompt may vary between different executions, which makes repeating tests at 
different times and in different contexts an interesting procedure to evaluate the 
consistency and stability of the results produced by the model. Furthermore, future work 
should include tests with alternative prompts, additional services and models, including 
open-source LLMs (such as Qwen, Mistral and others) under different configurations, 
as well as developing proposals for proxy components to analyze and sanitize inputs in 
order to make interaction with LLMs-based systems safer. 

This work was prepared exclusively for educational and scientific research 

4The number of safety tools tested by VirusTotal varies and is not controllable by the authors. 
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purposes. All experiments were conducted in controlled environments under the 
authors’ supervision and without malicious intent. The reproduction or use of the proce- 
dures described herein outside legitimate research contexts is strongly discouraged. 
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