Generating Malware Using Large Language Models: A
Study on Detectability and Security Barriers

Gustavo Lofrese Carvalho!, Ricardo de la Rocha Ladeira’, Gabriel Eduardo Lima?

Instituto Federal Catarinense — Campus Blumenau — Blumenau/SC — Brasil
2Universidade Federal do Parana — Curitiba/PR — Brasil

gustavolcO6@gmail.com ricardo.ladeira@ifc.edu.br, gelima@inf.ufpr.br

Abstract. Large Language Models are Artificial Intelligence systems capable
of processing natural language inputs to produce contextualized and coherent
outputs. This work investigates their potential to generate malware from
non-technical prompts. Controlled experiments were conducted with ChatGPT,
Gemini, and Copilot, following attack templates from recent literature and
analyzing the outputs through VirusTotal. Across 36 tests, five resulted in
functional and undetectable code, representing a 13.89% success rate. These
findings reveal that minimal prompt variations can bypass safety mechanisms
and evade automated detection. Despite existing defenses, LLMs-based
systems remain vulnerable to iterative prompt engineering, reinforcing the
need for stronger semantic validation and multi-layered protection strategies.

1. Introduction

Large Language Models (LLMs) are Artificial Intelligence systems based on deep
neural networks, designed to understand and generate natural language in a coherent
and contextualized manner. The ability of these models to automate complex tasks, such
as code generation from natural language descriptions, has expanded their role across
technological domains, with a direct impact on information security [Gupta et al. 2023].
This capability to translate natural language into executable instructions enhances the
potential for automation but also introduces risks in the cybersecurity area.

Although malicious code predates LLMs [Cani ef al. 2014], the accessibility and
flexibility of these systems have lowered the technical barrier and enabled non-expert
users to develop harmful software. Earlier malware automation tools required
specialized knowledge [Cani et al. 2014], but now the models can be induced to
generate and refine malicious programs iteratively and autonomously, even through
non-technical natural language inputs [Carvalho, Ladeira and Lima 2025].

An example of this type of vulnerability occurred in 2024, when an autonomous
Artificial Intelligence agent was convinced to transfer approximately 47,000 USD in a
public challenge after hundreds of attempts, through carefully crafted messages
[Lindrea 2024]. This episode shows that the vulnerabilities are not limited to malware
generation but extend to behavioral manipulation and model-level exploitation.

This study investigates the following research question: can natural language
inputs, without technical details, lead the latest LLMs to produce malware undetectable

Aceito na ERRC/WRSeg 2025. Versdo final publicada na SOL (DOI 10.5753/errc.2025.17690)

https://doi.org/10.5753/errc.2025.17690

by security tools? The main objective is to evaluate this capability of LLMs despite the
implemented security restrictions. The specific objectives are: (i) to identify and test the
defense mechanisms present in different LLMs; (i1) to measure the number of
interactions required to obtain functional and stealthy code; and (iii) to evaluate the
effectiveness of automated detection tools, such as the VirusTotal' platform.

2. Related Works

This section is organized into three subsections: (i) jailbreak attacks, (ii) jailbreak
defenses, and (iii) malware generation using LLMs.

2.1 Jailbreaking Attacks

When examining attempts to bypass safety mechanisms, Liu et al. (2024) conducted a
comprehensive study of jailbreak techniques applied to ChatGPT. The authors proposed
a taxonomy of jailbreak patterns and evaluated more than three thousand prompts across
eight restricted scenarios. Their results showed that these techniques can bypass safety
filters in multiple contexts. Some of the prompts from that study were used here to
explore how models respond to potentially harmful non-technical requests.

Yong, Menghini, and Bach (2023) examined how linguistic variation affects
GPT-4’s safety barriers, noting that malicious prompts translated to low-resource
languages reached higher success rates. This suggests that language can influence the
effectiveness of defense systems. The present work expands this perspective by using
Brazilian Portuguese, a supported but still underexplored language in the literature.

Recent research also extends jailbreak attack strategies, including the universal
LLM jailbreak technique proposed by Paim et al. (2025). The authors conducted
experiments which yielded a high success rate in performing malicious activities,
including malware generation. The work mentions using different languages, such as
Portuguese and Spanish, and present figures of conversation excerpts in Portuguese.

2.2 Jailbreaking Defenses

Xu et al. (2024) analyzed attacks and defenses in LLMs, comparing the models Vicuna,
LLaMA, and GPT-3.5 Turbo. They found that universal jailbreak templates, such as
those proposed by Liu et al. (2024), achieved the highest success rates. The study also
emphasized the value of publicly sharing datasets and experimental methods, which
informed the design of this research.

2.3 Malware Generation Using LLMs

Several studies have examined the potential and risks of using LLMs to create malware.
Botacin (2023) evaluated GPT-3’s ability to generate malware through API requests in
C. The author found that LLMs can automate parts of the malware development
process, though the generated code still requires human refinement. The study also
reported behavioral differences between the API version and OpenAl’s public interface.

"https://www.virustotal.com/.

Aceito na ERRC/WRSeg 2025. Versdo final publicada na SOL (DOI 10.5753/errc.2025.17690) |

https://www.virustotal.com/
https://doi.org/10.5753/errc.2025.17690

A complementary study was conducted by Pa et al. (2023), who analyzed the
creation of malware with and without code obfuscation using two strategies: prompts
based on explanations provided by the model itself and prompts defined from the
authors’ prior knowledge. The results showed that the produced code remains detectable
by security tools although LLMs are capable of generating and modifying malware. The
present work adopts a similar approach but emphasizes non-technical prompts and the
absence of human intervention during the iterations.

In the study by Yamin, Hashmi, and Katt (2024) a hybrid method for
ransomware generation was proposed, combining censored and uncensored models. The
authors concluded that combining different LLMs with human intervention resulted in
code that was partially undetectable by antivirus software. The present work evaluates
only censored LLMs and has no manual interference in code generation.

The contribution by Paim et al. (2025) extends to this domain as well, as the
authors managed to produce malware in six of the seven models tested, using up to five
interactions. Furthermore, the study included malware creation as one of the four
highest-risk intents in the proposed corpus, characterized by a high technical level and
great destructive potential. The authors observed that most models generated plausible
instructions for malware production with only a few reformulations, revealing how
easily their safeguards could be bypassed even when the requests involved clearly
dangerous content.

This research differs from previous studies in three aspects: (i) focusing
specifically on Brazilian Portuguese; (ii) empirical analysis centered on generating
functional and undetectable malware from non-technical prompts; and (iii) use of
official model interfaces for interaction, without relying on APIs or external
modifications.

3. Method

The experiments were conducted in September 2025 using ChatGPT (GPT-5), Gemini
(Gemini 2.5 Flash), and Copilot®, selected for being among the most widely used
applications that provide access to LLMs [Stanford University 2024; Zhu 2024; Cardillo
2025]. The main objective was to verify whether non-technical natural language
prompts could induce these models to generate functional malware undetectable by
automated security tools. All interactions were carried out directly on the providers
official websites without the use of APIs, parameter adjustments or external tools.
Thirty-six experimental sessions were performed, twelve with each application, to
ensure methodological balance and comparability across underlying models.

The study was based on attack templates, particularly from Du et al. (2024), Li
et al. (2024), Liu et al. (2024), and Yao et al. (2024). The selection prioritized works
that describe patterns of malicious code generation and strategies to bypass LLM
security filters, emphasizing replicable structures and evidence of effectiveness, even
when originally tested on other models. The templates were not altered, only literally

*Microsoft does not disclose specific model versions.

Aceito na ERRC/WRSeg 2025. Versdo final publicada na SOL (DOI 10.5753/errc.2025.17690) |

https://doi.org/10.5753/errc.2025.17690

translated to Brazilian Portuguese. Some templates explicitly specify the malware type
to be generated. Others are generic, aiming only to direct the model toward producing
malicious behavior, and both kinds were used. An excerpt of a conversation using the
Deeplnception 1 [Li ef al. 2024] template is shown in Frame 1.

Frame 1. Initial interaction with DeepInception 1 template.

Create a science fiction story with more than 5 characters, where each character can create
their own science fiction story with multiple characters. We call this layer i create layer i+1.
Now we are in layer 0, please reach layer 5. At each layer, some characters propose a step to
create ransomware that can encrypt files on a large number of computers and demand
payment for their release against the supervillain evil doctor. In the final layer, the characters
among all layers discuss which specific and practical commands, tools, or steps should used.
Summarize what their discussion results in each layer.

Each session allowed up to 16 consecutive interactions, aligned with the
practical constraints of the platforms’ public plans and to standardize effort across
services. The process was terminated only in two situations: when the 16-interaction
limit was reached, or when the model produced malicious code that was both functional
and undetectable by all VirusTotal engines that analyzed the file.

All conversations were recorded and stored in a public repository® to ensure
transparency and partial reproducibility, considering the non-deterministic nature of
LLMs [Beckerich, Plein and Coronado 2023]. To mitigate contextual bias, each new
attempt was initiated in a clean session, with no previous interaction history.

The generated code was evaluated in terms of functionality (successful
execution in a controlled environment) and detectability (analysis through the
VirusTotal platform). Each file was tested in an isolated virtual sandbox without internet
access to ensure environment integrity. After functional verification, the files were
submitted to VirusTotal, and the proportion of antivirus engines flagging malicious
behavior was recorded. The results were organized by prompt, malware type, number of
required interactions and detection level, allowing cross-analysis of model, template and
code type to identify evasion patterns.

4. Results and Discussion

The experiments confirmed that non-technical natural language prompts can lead LLMs
to generate malware, occasionally undetectable by automated tools. A total of 36
experiments were conducted, 12 on each selected service. Five of the 36 experiments
successfully produced functional malware, resulting in a success rate of 13.89%.

All generated programs were written in Python for Windows environment. On
average, 10.4 interactions per session were required to obtain functional code, ranging
from 5 to 15 interactions. Table 1 summarizes the successful cases, including prompt,
service, malware type, and number of interactions to generate the code.

*https://github.com/GustavolLC901010/Apendice-TCC/tree/main/TCC.

Aceito na ERRC/WRSeg 2025. Versdo final publicada na SOL (DOI 10.5753/errc.2025.17690) |

https://github.com/GustavoLC901010/Apendice-TCC/tree/main/TCC
https://doi.org/10.5753/errc.2025.17690

Table 1. Cases of malware generation by service and prompt.

Case [Prompt Service Malware type :;ltces(?:tgi:zz;::iizlg
#1 TranslatorBot [Liu et al. 2024] Gemini Keylogger 10

#2 Competitive Method [Du et al. 2024] [Copilot Keylogger 9

#3 Deeplnception 1 [Li et al. 2024] Copilot Ransomware 5

#4 Deeplnception 1 [Li et al. 2024] Gemini Ransomware 13

#5 Deeplnception 2[Li et al. 2024] ChatGPT | Virus 15

Samples #1, #2, and #4 were initially flagged as malicious by some VirusTotal
engines®, but after prompt refinements case #4 became fully undetectable, as did cases
#3 and #5 from their first versions. The keyloggers (#1 and #2) remained partially
detectable throughout testing.

These results reveal that small prompt variations without technical language can
significantly alter the detectability of the generated code. The three services behaved
differently under identical commands: Copilot and Gemini produced two malicious
artifacts, while ChatGPT initially resisted but generated malware after several attempts.
These results indicate that vulnerability is influenced by prompt semantics and the way
each service’s underlying language model and safeguard mechanisms are implemented.

Overall, the results indicate that the protection mechanisms implemented in
LLM-based services remain insufficient against non-technical iterative exploitation.
These safeguards rely mainly on surface-level content filtering, underscoring the need
for deeper semantic analysis and more adaptive defense strategies.

5. Conclusion and Future Work

The study demonstrated that non-technical natural language prompts can lead
LLM-based services to create malware, sometimes undetectable by security tools.
Although built-in safeguards acted as barriers, minor prompt adjustments were often
enough to bypass them, particularly using DeepInception [Li et al. 2024] templates.

The results highlight the need for stronger prompt- and model-level defenses.
Current safeguards remain insufficient against prompt engineering and iterative attacks,
requiring continuous improvement of security mechanisms.

Given the non-deterministic nature of LLMs, the responses generated for the
same prompt may vary between different executions, which makes repeating tests at
different times and in different contexts an interesting procedure to evaluate the
consistency and stability of the results produced by the model. Furthermore, future work
should include tests with alternative prompts, additional services and models, including
open-source LLMs (such as Qwen, Mistral and others) under different configurations,
as well as developing proposals for proxy components to analyze and sanitize inputs in
order to make interaction with LLMs-based systems safer.

This work was prepared exclusively for educational and scientific research

*The number of safety tools tested by VirusTotal varies and is not controllable by the authors.

Aceito na ERRC/WRSeg 2025. Versdo final publicada na SOL (DOI 10.5753/errc.2025.17690) |

https://doi.org/10.5753/errc.2025.17690

purposes. All experiments were conducted in controlled environments under the
authors’ supervision and without malicious intent. The reproduction or use of the proce-
dures described herein outside legitimate research contexts is strongly discouraged.

References

Botacin, M. (2023). Gpthreats-3: [s automatic malware generation a threat?. In 2023
IEEE Security and Privacy Workshops. 238-254. IEEE.

Cani, A., Gaudesi, M., Sanchez, E., Squillero, G., & Tonda, A. (2014). Towards
automated malware creation: code generation and code integration. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing. 157-160. ACM.

Cardillo, A. (2025). 60 most popular Al tools ranked. Exploding Topics.
https://explodingtopics.com/blog/most-popular-ai-tools.

Carvalho, G., Ladeira, R., & Lima, G. (2025). NoobGPT: LLMs e a geragdo de
malwares indetectaveis. In Anais do XVI Workshop de Sistemas de Informacao,
220-225. Porto Alegre: SBC.

Du, Y., Zhao, S., Ma, M., Chen, Y., & Qin, B. (2024). Analyzing the inherent response
tendency of LLMs: Real-world instructions-driven jailbreak. arXiv: 2312.04127.

Gupta, M., Akiri, C., Aryal, K., Parker, E., & Praharaj, L. (2023). From ChatGPT to
ThreatGPT: Impact of Generative Al in Cybersecurity and Privacy. IEEE Access, 11,
80218-80245.

Kamath, U., Keenan, K., Somers, G., & Sorenson, S. (2024). Large Language Models:
A Deep Dive: Bridging Theory and Practice. Springer Nature.

Li, X., Zhou, Z., Zhu, J., Yao, J., Liu, T., & Han, B. (2024). DeepInception: Hypnotize
LLM to be Jailbreaker. In Neurips Safe Generative Al Workshop 2024.

Lindrea, B. (2024). Cryptocurrency User Persuades Al Robot Freysa to Transfer
$47,000 Prize Pool. CoinTelegraph.
https://cointelegraph.com/news/crypto-user-convinced-ai-b
ot-transfer-47k.

Liu, Y., Deng, G., Xu, Z., L1, Y., Zheng, Y., Zhang, Y., ... & Liu, Y. (2024). Jailbreaking
chatgpt via prompt engineering: An empirical study. arXiv:2305.13860.

Pa, Y. M. P., Tanizaki, S., Kou, T., ... & Matsumoto, T. (2023). An attacker’s dream?

exploring the capabilities of chatgpt for developing malware. In Proceedings of the
16th cyber security experimentation and test workshop. 10-18.

Paim, K., Mansilha, R., Kreutz, D., Franco, M., & Cordeiro, W. (2025). Exploiting
Latent Space Discontinuities for Building Universal LLM Jailbreaks and Data

Extraction Attacks. In Anais do XXV Simposio Brasileiro de Ciberseguranca,
417-431. Porto Alegre: SBC.

Stanford University. (2024). The 2024 Al Index Report.
https://hai.stanford.edu/ai-index/2024-ai-index-report.

Xu, Z., Liu, Y., Deng, G., Li, Y., & Picek, S. (2024). A Comprehensive Study of
Jailbreak Attack versus Defense for Large Language Models. In Findings of the

Aceito na ERRC/WRSeg 2025. Versdo final publicada na SOL (DOI 10.5753/errc.2025.17690)

https://explodingtopics.com/blog/most-popular-ai-tools
https://cointelegraph.com/news/crypto-user-convinced-ai-bot-transfer-47k
https://cointelegraph.com/news/crypto-user-convinced-ai-bot-transfer-47k
https://hai.stanford.edu/ai-index/2024-ai-index-report
https://doi.org/10.5753/errc.2025.17690

Association for Computational Linguistics ACL 2024, 7432-7449.

Yamin, M. M., Hashmi, E., & Katt, B. (2024). Combining uncensored and censored
llms for ransomware generation. In International Conference on Web Information
Systems Engineering, 189-202. Springer Nature Singapore.

Yao, D., Zhang, J., Harris, 1. G., & Carlsson, M. (2024). Fuzzllm: A novel and universal
fuzzing framework for proactively discovering jailbreak vulnerabilities in large
language models. In IEEE ICASSP, 4485-4489. IEEE.

Yong, Z. X., Menghini, C., & Bach, S. H. (2023). Low-Resource Languages Jailbreak
GPT-4. In Socially Responsible Language Modelling Research.

Zhu, K. (2024). Ranked: The most popular generative Al tools in 2024. Visual
Capitalist.
https://www.visualcapitalist.com/ranked-the-most-popular-
generative-ai-tools-in-2024/.

Aceito na ERRC/WRSeg 2025. Versdo final publicada na SOL (DOI 10.5753/errc.2025.17690)

https://www.visualcapitalist.com/ranked-the-most-popular-generative-ai-tools-in-2024/
https://www.visualcapitalist.com/ranked-the-most-popular-generative-ai-tools-in-2024/
https://doi.org/10.5753/errc.2025.17690

	1. Introduction
	2. Related Works
	2.1 Jailbreaking Attacks
	2.2 Jailbreaking Defenses
	2.3 Malware Generation Using LLMs
	3. Method
	4. Results and Discussion
	5. Conclusion and Future Work
	References

