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Abstract—Vehicle information recognition is crucial in various
practical domains, particularly in criminal investigations. Vehi-
cle Color Recognition (VCR) has garnered significant research
interest because color is a visually distinguishable attribute of
vehicles and is less affected by partial occlusion and changes in
viewpoint. Despite the success of existing methods for this task,
the relatively low complexity of the datasets used in the literature
has been largely overlooked. This research addresses this gap
by compiling a new dataset representing a more challenging
VCR scenario. The images – sourced from six license plate
recognition datasets – are categorized into eleven colors, and
their annotations were validated using official vehicle registration
information. We evaluate the performance of four deep learning
models on a widely adopted dataset and our proposed dataset to
establish a benchmark. The results demonstrate that our dataset
poses greater difficulty for the tested models and highlights
scenarios that require further exploration in VCR. Remarkably,
nighttime scenes account for a significant portion of the errors
made by the best-performing model. This research provides a
foundation for future studies on VCR, while also offering valuable
insights for the field of fine-grained vehicle classification.

I. INTRODUCTION

Over the past two decades, there has been significant interest
in extracting vehicle information from images taken by surveil-
lance cameras. This technology plays a crucial role in various
practical domains [1]–[4], especially in criminal investigations.
Within this context, Vehicle Color Recognition (VCR) holds
significant importance. Color covers a substantial portion of
the vehicle’s surface, making it less prone to partial occlusion
and less affected by changes in viewpoint [5], [6].

Previous research on VCR can be broadly categorized into
two main groups: handcrafted methods [1], [7]–[10] and deep
learning-based approaches [2]–[6]. Alongside the approaches,
several datasets have been created to tackle the VCR problem.
Notably, Chen et al. [1] introduced the first publicly available
dataset, comprising 15,601 vehicles categorized into eight
color classes. This dataset has become a popular choice for
subsequent studies [2]–[5] due to its original challenging
nature, characterized by images with lighting variations, haze,
and overexposure.

Despite these conditions, studies have reported satisfactory
outcomes, achieving up to 95% average accuracy in color
recognition across the mentioned dataset and datasets with
similar characteristics [2]–[4], [6]. However, upon analyzing
these studies, it becomes evident that the explored datasets

(a) Images from the dataset proposed by Chen et al. [1].

(b) Images from the UFPR-VCR dataset, proposed in this work.

Fig. 1. Examples of images from the datasets proposed in [1] (a) and in this
work (b), with the corresponding vehicle color annotation shown above each
image. Observe that images in the proposed dataset (b) depict significantly
more challenging scenes than those in (a), featuring adverse conditions such
as nighttime settings and vehicles from various viewpoints.

lack images depicting highly adverse conditions. The images
primarily feature vehicles captured under adequate lighting
conditions and from a consistent viewpoint, with clearly
distinguishable colors, as shown in Fig. 1a. Consequently, the
reported satisfactory results may be misleading, as the testing
scenarios do not fully comprise the challenges often found in
real-world, unconstrained VCR applications.

To tackle a more complex VCR scenario, we introduce the
UFPR Vehicle Color Recognition (UFPR-VCR) dataset1,2. It
comprises 10,039 images featuring various real-world con-
ditions such as frontal and rear views, partially occluded

1https://github.com/lima001/ufpr-vcr-dataset
2Access is granted upon request, i.e., interested parties must register by

filling out a registration form and agreeing to the dataset’s terms of use.

https://doi.org/10.1109/SIBGRAPI62404.2024.10716307
https://github.com/lima001/ufpr-vcr-dataset


vehicles, diverse and uneven lighting, and nighttime scenes.
The images were sourced from six public datasets collected
in Brazil, originally intended for Automatic License Plate
Recognition (ALPR). The images cover eleven distinct vehicle
colors, with annotations for over 90% of the vehicles validated
using information obtained from the corresponding license
plates (see details in Section III-C).

Fig. 1b presents sample vehicle images from the proposed
dataset, along with their corresponding color annotations.
These images highlight the challenging VCR scenarios con-
sidered in this work, demonstrating the difficulty of accurately
classifying vehicle colors. To assess the dataset’s challenges
and pinpoint areas for improvement in VCR, we conduct a
benchmark study using four deep learning-based models.

The remainder of this work is organized as follows. Sec-
tion II reviews related works. Section III introduces the UFPR-
VCR dataset. Section IV details the conducted experiments
and presents the achieved results. Finally, Section V summa-
rizes our findings and outlines directions for future research.

II. RELATED WORK

This section overviews the datasets proposed within the
VCR context. It outlines their key characteristics, describes
the methodologies employed in studies using these datasets,
and summarizes the results they have achieved.

In 2007, Baek et al. [7] proposed a dataset comprising 500
images from unspecified scenarios, equally distributed across
five colors. They utilized a 2D histogram technique within
the HSV color space for feature extraction and employed
Support Vector Machines (SVMs) for classification, reporting
an average accuracy of 94.9%. Using this dataset, Son et al. [8]
further refined the SVM classifier by proposing a convolution
kernel, achieving precision and recall rates exceeding 92%.

Three years later, Dule et al. [9] introduced a dataset
containing 1,960 highway images, evenly distributed across
seven colors. Half of the images were pre-processed to include
a smoothed hood region of the vehicle, while the remaining
images show frontal views. The highest accuracy (83.5%) was
achieved using histogram features from different color spaces,
classified with a multilayer perceptron.

While the datasets mentioned above were once accessible,
they are currently unavailable to the best of our knowledge. In
2014, Chen et al. [1] introduced a dataset for VCR consisting
of 15,601 frontal images captured by surveillance cameras
under challenging conditions, compared to other datasets at the
time. These images are categorized into eight colors: black,
blue, cyan, gray, green, red, white, and yellow. The authors
employed an implicit region-of-interest selector integrating
spatial information for feature extraction. By combining this
technique with principal component analysis and an SVM clas-
sifier, they attained an average recognition precision of 92.5%.

In subsequent studies using the same dataset, efforts were
made to refine the feature extraction method. Hu et al. [5]
integrated a Convolutional Neural Network (CNN) with Spa-
tial Pyramid Pooling (SPP), achieving an average precision of
94.6%. Zhang et al. [2] further proposed feature fusion from

multiple CNN layers via SPP, resulting in an average precision
of 95.4%. Fu et al. [3] introduced the Multiscale Comprehen-
sive Feature Fusion Convolutional Neural Network (MCFF-
CNN), which incorporates residual learning and inception
modules, achieving an average precision above 97%.

In 2021, Wang et al. [6] built a dataset featuring 32,220
vehicles distributed across eleven colors, further subdivided
into 75 subcategories. The dataset exclusively contains rear-
view vehicle images, annotated using a clustering algorithm
and prior knowledge of typical vehicle colors. The researchers
achieved an average accuracy of 97.8% using a hybrid model
that combines CNN and Vision Transformer (ViT) models.
Despite our efforts to contact the authors for access to the
dataset, we have not yet received a response.

In 2023, Hu et al. [4] introduced the Vehicle Color-24
dataset, composed of 31,232 vehicles categorized into 24 color
classes. Before preprocessing, the dataset included 10,091
frontal-view vehicle images suitable for both vehicle detection
and color identification tasks. The authors employed CNN
and Feature Pyramid Networks (FPN) modules for multi-
scale information fusion, alongside a loss function aimed at
addressing the dataset’s long-tail distribution. They reported a
mean average precision of 95.0%.

Although initially appealing, the Vehicle Color-24 dataset
was not considered in this research for two key reasons. First,
we obtained access to the dataset only recently, during the
course of this study. Second, all samples within the dataset
underwent preprocessing steps, including haze removal and
lighting adjustments, by its creators. These alterations may
have reduced the dataset’s diversity and, consequently, its
ability to faithfully represent real-world conditions.

Despite the progress in VCR research with the develop-
ment of increasingly robust methods, our analysis of existing
datasets reveals that they predominantly feature relatively
simple scenarios. These scenarios typically show vehicles in
daylight hours, captured from a single perspective, without
occlusions or vehicles partially outside the image frame. While
these datasets have enabled methods to achieve high success
rates, they do not fully capture the complexities of real-
world scenarios. Therefore, the introduction of the UFPR-
VCR dataset represents a distinctive contribution to advancing
this field. Furthermore, previous research has focused on
maximizing performance on the VCR task. This research,
however, aims to identify the complex scenarios that limit
VCR success in unconstrained scenarios and use those insights
to drive further development in the field.

III. THE UFPR-VCR DATASET

This section details the creation process and main charac-
teristics of the UFPR-VCR dataset. It includes 10,039 images
from 9,502 different vehicles, categorized into eleven colors:
beige, black, blue, brown, gray, green, orange, red, silver,
white, and yellow. The distribution of images across these
colors is highly unbalanced (see Fig. 2). This reflects the real-
world scenario, where vehicle colors such as white, black, and
shades of gray are more common than others [11]–[13].
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Fig. 2. Distribution of vehicle colors in the UFPR-VCR dataset.

The images show vehicles across different categories (i.e.,
cars, vans, buses, and trucks) captured in diverse environments.
The original images, before vehicle cropping, were sourced
from six Brazilian datasets commonly used in ALPR research,
namely: OpenALPR-BR [14], RodoSol-ALPR [15], SSIG-
SegPlate [16], UFOP [17], UFPR-ALPR [18], and Vehicle-
Rear [19]3. Table I provides an overview of these datasets.

TABLE I
SUMMARY OF THE ALPR DATASETS USED TO CREATE UFPR-VCR.

Dataset Year Images Resolution Viewpoint

UFOP [17] 2011 377 800× 600 Frontal/Rear
SSIG-SigPlate [16] 2016 2,000 1920× 1080 Frontal
OpenALPR-BR [14] 2016 115 Various Frontal/Rear
UFPR-ALPR [18] 2018 4,500 1920× 1080 Frontal/Rear
Vehicle-Rear∗ [19] 2021 445∗ 1280× 720 Rear
RodoSol-ALPR [15] 2022 20,000 1280× 720 Frontal/Rear

∗ We used only the portion of Vehicle-Rear that includes labels for the license plates.

We selected these datasets for three main reasons: (i) they
are widely adopted [15], [20]; (ii) their images depict scenes
with diverse lighting and viewpoints; and (iii) they include
license plate-related annotations, enabling the validation of
color annotations and therefore minimizing labeling errors.

As expected, the chosen datasets do not share a standard or-
ganization scheme. Hence, preprocessing and image selection
procedures were implemented to standardize the images and
identify those appropriate for the VCR task. These procedures
are detailed in Section III-A and Section III-B, respectively.
Lastly, Section III-C describes the labeling process.

A. Preprocessing

Vehicles were cropped and separated into individual images.
Vehicle bounding box information was readily available in
the OpenALPR-BR, SSIG-SegPlate, UFOP, UFPR-ALPR, and
Vehicle-Rear datasets. Due to the lack of this information in
the RodoSol-ALPR dataset, we used the well-known YOLOv8
model [21] for vehicle detection, as depicted in Fig. 3. This
model was chosen for its robust performance and extensive use
in both academic research and industry [21]–[23]. Importantly,

3 We received permission from the creators of the explored ALPR datasets
to build the UFPR-VCR dataset.

no noise removal or image enhancement techniques were
applied to preserve the original adverse image conditions.

Vehicle DetectionOriginal Image Cropped Vehicle

Fig. 3. Illustration depicting the process of extracting vehicle patches from
images in the RodoSol-ALPR dataset, which lacks vehicle position labels.

B. Image selection

After preprocessing, a total of 28,061 images were obtained.
However, another filtering process was necessary to ensure that
every image in the UFPR-VCR dataset is suitable for the VCR
task. This involved discarding 10,870 motorcycle images from
UFPR-ALPR (870) and RodoSol-ALPR (10,000), as these
images represent scenarios where identifying the vehicle color
was nearly impossible (see three examples in Fig. 4).

(a) Red (b) Red (c) Blue

Fig. 4. Examples of discarded motorcycle images: (a) and (c) were sourced
from the RodoSol-ALPR dataset [15], while (b) was extracted from the UFPR-
ALPR dataset [18]. Below each image is the corresponding motorcycle’s color.
In this figure, the original images were slightly resized for better viewing.

Another selection process was conducted to remove redun-
dant images from the tracks in the SSIG-SegPlate and UFPR-
ALPR datasets. These datasets contain different vehicle tracks,
each comprising a series of sequential frames extracted from
videos focusing on a single target vehicle (although other
vehicles may appear in the background) [16], [18]. Due to
the low variability between vehicle images cropped from the
same track, only one vehicle image per track was selected.
The criterion for selection was to choose the middle image
from each track (e.g., if a track contains 30 images, the 15th
image was selected). As a result, 6,278 vehicle images were
excluded, and 10,913 were retained.

A similar case occurs in the Vehicle-Rear dataset, as it also
includes sequential frames extracted from videos. To address
heavily occluded images resulting from overlapping vehicles
within the camera’s field of view, preference was given to
images that clearly depict the vehicle’s body. When multiple
images met this criterion, selections were made randomly,
leading to the exclusion of 373 images from the dataset.
Following this process, 10,540 vehicle images were kept.

In the RodoSol-ALPR dataset, while not consisting of
sequential frames extracted from videos, individual vehicles
appear multiple times across different days and times. To
ascertain whether images of the same vehicle represent distinct
scenarios [24], images were grouped based on their license



plate annotations and manually verified. During this review,
418 images were excluded due to minimal perceptible differ-
ences in lighting, pose, or other distinguishing characteristics,
while 10,122 images were retained.

The final selection process involved removing 83 images
that lacked identifiable colors. This was mainly observed
(i) when vehicles were heavily occluded or substantially out-
side the image frame; and (ii) when vehicles are registered as
“multicolored”4 (a rare occurrence). Fig. 5 provides examples
of images excluded during this selection process.

(a) Multicolored (b) White (c) White

Fig. 5. Examples of images excluded due to vehicles with multiple colors (a)
and those partially outside the image frame (b, c). The colors of the vehicles
in (b) and (c) cannot be visually determined solely from their front bumpers.
Note that the vehicle images in this figure were resized for improved visibility.

C. Annotations

As the UFPR-VCR dataset derives from established ALPR
datasets, each image was initially associated with the license
plate of the target vehicle. These annotations enabled the auto-
mated retrieval of vehicle information from Brazil’s National
Traffic Secretariat (SENATRAN) database, streamlining the
annotation process. In total, 9,502 unique license plates were
identified. However, there were 212 plates (corresponding to
906 images) for which vehicle information was unavailable.
These cases required manual annotation. Finally, vehicles with
similar colors were grouped, and the annotations were manu-
ally re-validated to ensure the accuracy of each vehicle’s label.

IV. EXPERIMENTS

This section presents a benchmark study conducted on the
UFPR-VCR dataset. The study compares four deep learning
models on the proposed dataset to evaluate its complexity and
identify potential areas for improving VCR. Given the absence
of prior studies demonstrating the suitability of these models
for VCR, a brief study was performed on the dataset proposed
by Chen et al. [1], the results of which are also presented here.

The rest of this section is structured as follows. Section IV-A
covers the experimental methodology. Section IV-B presents
the results obtained on the dataset proposed by Chen et al. [1].
Lastly, Section IV-C presents the results achieved on UFPR-
VCR, highlighting the challenges posed by this dataset.

A. Methodology

The evaluation on the Chen et al. [1] dataset and the
benchmark on the UFPR-VCR dataset share nearly identical
methodology. The only difference is the training protocols
applied. The materials and methods are summarized as follow:

4 The term “multicolored” (a non-literal translation of ‘fantasia’ in Por-
tuguese) is used when the vehicle’s primary color cannot be determined [25].

1) Models: we explored EfficientNet-V2 [26], MobileNet-
V3 [27], ResNet-34 [28], and ViT b16 [29]. These models
were chosen for their widespread adoption in computer vi-
sion tasks and their availability with implementations across
various frameworks, which enhances research reproducibility.

2) Dataset splitting: the datasets were divided into training,
validation, and test subsets using an 8:1:1 ratio. The images
were distributed across the different colors for each subset,
aiming to mirror the original dataset’s class distribution as
closely as possible. When the class distribution did not evenly
divide between validation and test subsets, any surplus images
were randomly assigned to one of the subsets.

3) Preprocessing: all images were resized to 224 × 224
pixels to align with the input size required by the models. To
increase data variability during training, the following trans-
formations were applied to each image in every training batch:

• Affine transformations (with a probability p = 50%),
including rotations (±180°), scaling (from 0.9 to 1.3),
and shearing (±180°);

• Random adjustments to image brightness and con-
trast (p = 30%), within a limit of 0.2;

• Blur using a generalized normal filter with randomly
selected parameters (p = 40%);

• A random 72× 72 pixel section of the image is replaced
with random noise (p = 25%).

Finally, every image was normalized using the mean and
standard deviation from ImageNet [30].

4) Training: We employed transfer learning by initializing
all models with pre-trained weights from ImageNet [30].
Each network’s final fully connected layer was adapted to
produce outputs specific to the classes within the dataset being
explored. To be precise, weight adjustments were confined to
these layers during the training phase.

The Adam optimizer [31] was employed with β1 = 0.9,
β2 = 0.999, a batch size of 128, weight decay set to 10-5,
and an initial learning rate of 10-4. A learning rate reduction
scheme was used with a patience value of 10 and a reduction
factor of 10-1 upon plateau detection. Training extended up to
a maximum of 400 epochs, with early stopping configured
to halt training if no improvement was observed for 15
consecutive epochs. We used the cross-entropy loss function.

Two different training protocols were implemented for the
UFPR-VCR dataset: (i) training with data augmentation only;
and (ii) training with oversampling of minority classes to
balance the dataset distribution. The adopted oversampling
method increases the frequency of minority class samples
during training by creating synthetic data through data aug-
mentation. This technique is known to enhance results on
imbalanced datasets [32], [33]. For the dataset proposed by
Chen et al. [1], only protocol (i) was adopted, as it proved
sufficient to achieve good results.

5) Evaluation: Each experiment was repeated five times
using different dataset splits, and the results are reported based
on the average outcomes. The evaluation metrics used are top-
1 accuracy (Top-1), top-2 accuracy (Top-2), precision, recall,
and F1-score (F1). These metrics were calculated globally for



each iteration using macro averaging. Running the experiments
multiple times helps ensure the reliability of the results,
reducing the influence of random variations in the data splits.

B. Results on the dataset proposed by Chen et al. [1]

This section aims to “pre-validate” the models adopted as
benchmarks for UFPR-VCR, demonstrating their suitability
for the VCR task. Table II presents the results obtained for
each model on the dataset presented in [1]. Notably, the best-
performing model is ViT b16, achieving an average precision
close to those reported in the literature [1], [3], [5]. Fur-
thermore, the Top-1 and Top-2 accuracies from the evaluated
models indicate promising results for the VCR problem.

TABLE II
GLOBAL METRICS (%) REACHED BY ALL MODELS ON THE DATASET
PROPOSED BY CHEN ET AL. [1] (AVERAGED OVER FIVE RUNS). THE

MODELS WERE TRAINED WITH THE DATA AUGMENTATION PROTOCOL.

Model Top-1 Top-2 Precision Recall F1

EfficientNet-V2 [26] 84.6 93.4 84.5 84.6 84.4
MobileNet-V3 [27] 90.6 96.7 91.7 90.6 91.0
ResNet-34 [28] 89.0 95.6 91.1 89.0 89.9
ViT b16 [29] 92.8 98.0 95.3 92.8 93.9

The results indicate that the explored models are suitable for
studying the VCR problem, reinforcing the relevance of the
proposed research. Specifically, with relatively minimal effort,
we achieved results comparable to state-of-the-art works on
the dataset introduced in [1]. Hence, we claim that research
using this dataset (and others with similar characteristics) does
not represent a challenging scenario for VCR evaluation.

C. Results on the UFPR-VCR dataset

Table III presents the results for each model on the UFPR-
VCR dataset, considering the two training protocols. Remark-
ably, models trained using protocol (i) achieved better preci-
sion and F1 values but exhibited lower accuracy compared to
those trained under protocol (ii). This discrepancy stems from
the higher frequency of minority classes in protocol (ii). While
this improves overall accuracy, it reduces the precision for the
majority classes. As the test set is also unbalanced, the preci-
sion on models trained with protocol (ii) is negatively affected.

TABLE III
GLOBAL METRICS (%) REACHED BY ALL MODELS ON THE UFPR-VCR
DATASET (AVERAGED OVER FIVE RUNS). PROTOCOL (II) INCORPORATES

OVERSAMPLING OF MINORITY CLASSES, WHEREAS (I) DOES NOT.

Protocol Model Top-1 Top-2 Precision Recall F1

(i)

EfficientNet-V2 [26] 51.2 65.3 65.2 51.2 53.5
MobileNet-V3 [27] 50.5 65.4 65.8 50.5 53.1
ResNet-34 [28] 49.1 60.3 64.3 49.1 52.4
ViT b16 [29] 59.2 71.3 76.0 59.2 62.8

(ii)

EfficientNet-V2 [26] 55.4 69.5 43.5 55.4 44.6
MobileNet-V3 [27] 59.3 73.3 42.6 59.4 45.2
ResNet-34 [28] 59.3 72.9 47.8 59.3 49.9
ViT b16 [29] 66.2 79.7 55.7 66.2 57.8

Keeping this in mind, we analyzed correct and incorrect
predictions using the best model in terms of top-1 accuracy,
specifically ViT b16 trained under protocol (ii). Fig. 6 shows

the normalized confusion matrix averaged across the five runs.
It reveals that colors such as yellow, white and red were
consistently identified with high accuracy compared to other
classes. Conversely, colors such as brown, blue, green and gray
posed challenges for identification. This difficulty likely stems
from dataset characteristics, including significant variations in
tone and lighting conditions, potentially causing these colors
to be mistaken for shades of gray or black.

Yellow  Blue  Beige  White  Gray  Orange  Brown  Silver  Black  Green  Red
Predicted

Yellow

 Blue

 Beige

 White

 Gray

 Orange

 Brown

 Silver

 Black

 Green

 Red
Tr

ue

0.89 0.00 0.03 0.00 0.00 0.06 0.00 0.00 0.00 0.03 0.00

0.01 0.51 0.00 0.01 0.20 0.00 0.01 0.01 0.13 0.11 0.01

0.00 0.00 0.79 0.01 0.03 0.00 0.00 0.15 0.00 0.01 0.00

0.00 0.00 0.01 0.91 0.00 0.00 0.00 0.06 0.01 0.01 0.00

0.00 0.09 0.04 0.00 0.57 0.00 0.02 0.06 0.15 0.06 0.00

0.10 0.00 0.10 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.20

0.00 0.12 0.00 0.00 0.12 0.00 0.42 0.00 0.17 0.12 0.04

0.00 0.01 0.10 0.05 0.06 0.00 0.01 0.73 0.01 0.02 0.00

0.00 0.11 0.00 0.00 0.09 0.00 0.03 0.00 0.69 0.06 0.01

0.02 0.26 0.02 0.02 0.18 0.00 0.00 0.04 0.16 0.30 0.00

0.00 0.02 0.00 0.00 0.01 0.01 0.03 0.00 0.03 0.01 0.87

Normalized Average Confusion Matrix

Fig. 6. Normalized confusion matrix illustrating the performance of the
ViT b16 model trained with data augmentation and oversampling techniques.

Our analysis uncovered an interesting trend: nighttime im-
ages were misclassified at a much higher rate than daytime im-
ages. Specifically, 72 out of 222 misclassified images (32.4%)
were captured at night. Nighttime images likely constitute
less than 10% of the UFPR-VCR dataset, although the exact
percentage is unknown as capture times are not labeled in the
original datasets. This discrepancy is likely due to the inherent
challenges of nighttime scenes, such as high illumination and
overexposure from vehicle headlights (see Fig. 7). The causes
behind the remaining misclassifications were less apparent.

GT: White
Pred: Silver

GT: Red
Pred: White

GT: Black
Pred: Gray

Fig. 7. Examples of nighttime images that were misclassified.

Finally, we analyzed the model’s second-choice predic-
tions (top 2) for images it initially misclassified (errors in terms
of top-1 accuracy). Notably, colors like beige, white, gray,
silver, and black achieved over 50% classification accuracy
in these cases. In other words, the model’s second prediction
was correct for more than half of the misclassified images in
these color categories. However, it is important to note that an
average of 44.4% of the nighttime images remained incorrectly
classified even considering the top-2 predictions.



V. CONCLUSIONS

This study revealed shortcomings in existing Vehicle Color
Recognition (VCR) datasets, emphasizing their inadequacy
in replicating real-world, unconstrained scenarios. To address
this issue, we compiled the UFPR-VCR dataset. It comprises
10,039 images featuring adverse scenarios, such as various
viewpoints, uneven lighting, and nighttime scenes, across 11
color classes. A benchmark study using four deep learn-
ing models demonstrated that UFPR-VCR presents signifi-
cant challenges for VCR, particularly in nighttime scenarios,
which accounted for ≈ 33% of the errors by the best-
performing model despite representing a much smaller portion
of the dataset.

This study identifies remaining scenarios in VCR that
require further investigation. Developing novel methods for
robust color recognition under adverse conditions is essential
to improve the reliability of these approaches in real-world
applications. We hope this work serves as a catalyst for VCR
research in adverse conditions, encouraging future studies to
address progressively more difficult scenarios.

An important future research direction is tackling the chal-
lenges of VCR in nighttime scenes. This endeavor would likely
involve investigating advanced preprocessing methods and
designing specialized architectures to enhance current results.
Additionally, we plan to enrich the dataset by incorporating
more vehicle attributes, such as type (e.g., sedan, hatchback,
truck), make, and model. This would enable the integration of
color recognition with fine-grained vehicle classification tasks,
potentially through a multi-task learning framework.
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