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Abstract—Fine-Grained Vehicle Classification (FGVC) plays
a key role in intelligent transportation systems, enabling the
recognition of vehicle attributes — such as type, make, and model —
from images. Such information supports vehicle identification
and can complement automatic license plate recognition by
enabling cross-checks and addressing cases with unreadable
plates. However, existing approaches often treat these attributes
independently, overlooking their hierarchical relationships and
differences in task difficulty. This work-in-progress study explores
the use of Multitask Learning (MTL) and hierarchical regular-
ization to address these gaps. We evaluate seven deep learning
models on a diverse dataset under three training setups: single-
task learning, MTL with balanced optimization, and MTL with
hierarchical regularization. Results show that MTL consistently
improves classification accuracy, while incorporating hierarchical
information significantly reduces semantic inconsistencies and
enhances confidence calibration. In our best-performing configu-
ration, hierarchy-violating errors dropped from 32.87% (single-
task) to 4.10% (MTL with hierarchical regularization). These
findings highlight the importance of modeling semantic relation-
ships among attributes in FGVC and suggest promising direc-
tions for building more accurate and reliable classifiers. Future
work will expand attribute granularity, investigate optimal task
combinations, and benchmark against state-of-the-art methods.

I. INTRODUCTION

Fine-Grained Vehicle Classification (FGVC) involves recog-
nizing detailed vehicle attributes from images, such as make,
model, and type [1], [2]. This task is central to a wide range
of applications, including traffic management, parking systems,
and forensic analysis. FGVC can also complement automatic
license plate recognition systems, particularly in challenging
scenarios where license plates are obscured, illegible, or
require cross-verification [3]-[5].

Contemporary FGVC approaches largely rely on Convo-
lutional Neural Networks (CNNs) and Vision Transform-
ers (ViTs), both of which have achieved high accuracy in dis-
tinguishing visually similar vehicles [1], [6]. These approaches
typically frame the problem as a single-label classification
task, merging multiple vehicle attributes into a single com-
pound label. For instance, class labels may encode the vehicle’s
make and model [7], or include more granular information
such as sub-model and production year [8].

This formulation overlooks the hierarchical and semantic
relationships among vehicle attributes, as well as the variation
in task difficulty across different levels of granularity. In

T{ed.santos,eduiljunior}@pm.pr.gov.br

Irayson@ppgia.pucpr.br

contrast, prior research in hierarchical fine-grained classifi-
cation [9]-[11] has shown that Multitask Learning (MTL)
approaches that explicitly model these dependencies can im-
prove generalization and lead to more consistent, semantically
coherent predictions.

Nevertheless, gaps remain in the current literature. First,
existing studies typically explore limited multitask configura-
tions, rarely evaluating combinations involving more than two
attributes [10]-[12]. Second, hierarchical modeling is often
integrated into specific framework proposals, with little sys-
tematic assessment across standard deep learning architectures.
Consequently, the impact of jointly learning multiple attributes
on model performance remains unclear.

To address these limitations, this work-in-progress study
evaluates seven deep learning models in a single-task set-
ting, assessing performance separately for make, model, and
type (e.g., bus, car, truck) classification. These models are then
adapted to a multitask setting to compare performance when
attributes are learned jointly. A hierarchical regularization
approach is also applied to enforce consistency between related
tasks. The results demonstrate how task relationships influence
learning dynamics and affect FGVC results.

This study takes an initial step toward understanding how
jointly learning related tasks at different levels of granularity
can improve FGVC. It adopts a simplified setup using standard
deep learning backbones to evaluate the effects of multi-
attribute supervision and hierarchical consistency on repre-
sentation learning. By avoiding architecture-specific designs,
the approach enhances interpretability and reproducibility. The
goal is to provide a transparent and practical baseline for
studying hierarchical information and to guide future research
on more advanced strategies.

The remainder of this paper is structured as follows. Sec-
tion II reviews related work. Section III outlines the theoretical
foundations. Section IV details the experimental setup and
Section V discusses the results. Finally, Section VI summarizes
the key findings and highlights directions for further research.

II. RELATED WORK

FGVC aims to distinguish between visually similar vehicle
categories, such as make and model. Early approaches relied
on handcrafted features (i.e., edges, contours, gradients) com-
bined with conventional classifiers [13], [14]. These methods
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were limited in scalability and robustness. The introduction
of large-scale datasets such as Stanford Cars-196 [8] and
CompCars [7] marked a turning point, enabling the adoption
of CNNs and shifting the field towards deep learning.

Building on that, studies have explored methods to better
capture subtle visual differences between vehicles. Strategies
included part-based modeling [15] and coarse-to-fine local-
ization [16] to enhance feature discrimination. Other advances
include multi-branch architectures [17], attention-based mech-
anisms [18], feature refinement modules [19], and customized
losses designed for fine-grained classification [20].

While make and model recognition have received significant
attention, vehicle type recognition has evolved largely in
parallel as a distinct task. Early type classification systems
were based on geometric templates, edge detection, and di-
mensionality reduction methods [21], [22]. The availability of
type-focused datasets such as BIT-Vehicle [23] and SYSU-
Vehicle [24] enabled the adoption of CNN-based models,
which quickly outperformed traditional approaches and be-
came the standard in the field.

Despite the maturity of FGVC, relatively few studies have
explored multitask frameworks that jointly predict vehicle
attributes. This gap has been partially addressed in the broader
field of hierarchical fine-grained classification, which models
interdependent labels organized across hierarchy levels. Stud-
ies typically leverage MTL to exploit shared representations
across coarse and fine-grained labels, using hierarchical feature
fusion modules and consistency-enforcing loss functions to
improve results on finer-grained tasks [10]-[12], [25].

This work adopts a distinct approach from prior studies
by focusing on the joint learning of make, model, and type
using standard deep learning backbones, without relying on
specialized hierarchical modules. This architecture-agnostic
setup enables a reproducible and interpretable analysis of
how multi-attribute supervision and hierarchical consistency
influence FGVC. As an early step in a broader research
agenda, it lays the groundwork for exploring more complex
granularity-aware modeling and provides a practical baseline
for future developments.

III. BACKGROUND

This section presents the theoretical foundations underlying
the experimental research design, focusing on two key compo-
nents: the multitask setup with task balancing (Section III-A),
and the hierarchical regularization method (Section III-B).

A. Multitask Learning and Gradient Balancing

MTL is a paradigm in which a single model is trained
to perform multiple related tasks simultaneously [26]. By
leveraging shared representations, it can capture common
features across tasks, often leading to better generalization
and improved performance compared to training each task
independently [27]. This work adopts a standard approach
consisting of a shared feature extractor followed by task-
specific classification heads.

Formally, let 7 = {t1,¢a,...,t,} denote the set of tasks.
The model comprises a shared encoder with parameters 6,
and individual classification heads h; with parameters 6; for
each t € 7. For an input sample x, the model computes
a shared representation f(x;6s), which is then passed to
each head to produce task-specific outputs h.(f(z)). The
overall training objective is a weighted sum of task-specific
classification losses:

L = w (1)
teT

where Egk) is the loss for task ¢ at iteration £, and wt(k) € Ry
is a weight that controls the contribution of each task’s loss.

However, tasks in a multitask setting often differ in diffi-
culty and convergence speed, resulting in imbalanced gradient
updates. This can lead the model to prioritize easier tasks
while underfitting harder ones. To mitigate this, we adopt
GradNorm [28] to dynamically adjust the contribution of each
task’s loss and ensure that all tasks make balanced progress
during training.

At each training step k, GradNorm [28] computes the
gradient norm of each task’s weighted loss with respect to
the shared parameters:

W=l )], o

The goal is to align each gradient norm ng) with a target
value ng) that reflects the relative speed at which the task

is learning:
A(k) _ A(k) Tf(k) i
G, =G = . 3)

Here, rt(k) = £,§k) /Eio) is the learning ratio of task ¢,
representing how much its loss has decreased relative to its
initial value. The terms G**) and 7#*) denote the average
gradient norm and average learning ratio across all tasks,
respectively. The hyperparameter o > 0 controls the sensitivity
to imbalances: higher values emphasize slower-learning tasks
more strongly.

GradNorm [28] minimizes the discrepancy between the
actual and target gradient norms by optimizing the objective:

k k ~(k
Lonaam = Y |G = G| . @
teT

This loss is minimized only with respect to the task
weights w{*), which d ing traini
ghts w,"’, which are updated during training.

B. Hierarchical Regularization

Fine-grained classification tasks can involve related at-
tributes organized in a semantic hierarchy, where coarser
categories constrain the possible values of finer-grained at-
tributes. To promote consistency across these hierarchically
dependent tasks, we adopt a regularization strategy inspired
by hierarchical fine-grained classification literature [12], [29].
This regularization encourages predictions at each finer level



to remain consistent with the predictions or ground-truth labels
of coarser levels.

Let t; and t44; represent two classification tasks in a
hierarchical structure, where t; denotes a coarser level and
tq+1 a finer level. Each task is formulated as a multi-class
classification problem. For each input x, the model outputs
predicted probability distributions pgd) and de“). Given the
ground-truth label yg(fd) at level d, a soft target distribution
qi**'1") is defined by uniformly distributing probability
across the set of valid classes in t44; that are descendants
of yg(fd). This soft target reflects the permissible fine-level
predictions conditioned on the coarse-level label, enforcing
semantic consistency across the hierarchy.

For example, in the vehicle classification context, if tg4
corresponds to the make (e.g., Ford) and t44; to the model
(e.g., EcoSport, Fiesta), the soft target for model prediction
assigns non-zero probability only to models associated with
the make “Ford”, penalizing inconsistent predictions such as
“Corolla”, which belong to a different make.

To implement this regularization, a Kullback-Leibler (KL)
divergence penalty between the soft target distribution and the
model’s prediction at t44; is computed:

L = Dy (@0 | pe) L)
where o
Q@
Dxr(allp) =) qjlog <]) : (6)
= Pj

Here, p; and q; denote the predicted and target probabilities
for class j at the finer task ¢4, respectively; C' is the total
number of classes at this level. Eq. (5) loss term can be applied
to any pair of hierarchical dependent tasks and seamlessly
integrated into the overall training objective as an auxiliary
regularization component.

IV. METHODOLOGY

This section describes the methodology used to assess the
impact of joint learning of vehicle make, model, and type on
FGVC. Three setups are evaluated: (el) single-task training;
(e2) MTL with GradNorm [28]; and (e3) MTL with GradNorm
and hierarchical regularization. Section IV-A presents the
dataset used, and Section IV-B details each experiment.

A. Dataset

The dataset used in this study is part of a separate work
currently under review and will be released to the public
upon publication. It comprises 24,945 images of 16,308 unique
vehicles, with annotations for 26 vehicle makes, 136 models,
and 14 vehicle types. Images were collected from a real-world
surveillance system in a single municipality in Brazil. Im-
ages capture diverse operational conditions, including multiple
views, partial occlusions, varying lighting environments, and
infrared imaging (see Fig. 1).

The dataset is highly unbalanced, reflecting real-world ve-
hicle distributions. Fig. 2 illustrates a simplified view of the
distribution, highlighting the three most and least frequent

Fig. 1. Images from the explored dataset, showcasing vehicles captured across
various viewpoints, environments, lighting conditions, image quality levels,
and nighttime infrared scenarios.

vehicle makes and types. To reduce sampling bias, the data
were divided into five non-overlapping, stratified folds that
maintain class proportions across tasks. To avoid data leakage,
all images of a given vehicle (identified by its license plate)
were assigned to the same fold [30]. Ten train-validation-test
splits were then created using a 3:1:1 ratio, with each fold
serving as the test set twice.
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(a) Top-3 most and least frequent vehicle makes, representing ~ 49%
of all dataset samples.
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(b) Top-3 most and least frequent vehicle types, representing ~ 77%
of all dataset samples.

Fig. 2. Top-3 most and least frequent classes for the vehicle attributes of
make (a) and type (b) in the dataset. These distributions highlight the dataset’s
class imbalance, with a small number of dominant classes accounting for a
large portion of the samples.

This dataset was chosen over existing FGVC alternatives
for three main reasons: (i) it captures a more realistic and
unconstrained scenario, better aligned with real-world condi-
tions; (ii) to our knowledge, no public FGVC dataset includes
annotations for vehicle type, make, and model simultaneously;
and (iii) its labels were cross-verified with official vehicle
registration data, reducing annotation errors.

B. Experimental Setup

Seven deep learning models are evaluated: EfficientNet-
V2 Small [31], MobileNet-V3 Small [32], ResNet-50 [33],



ResNet-101 [33], ViT-B16 [34], and two YOLO classifica-
tion [35] variants (YOLOv11-nano-cls and YOLOv11-small-
cls). These models were selected for their relevance in com-
puter vision, widespread academic and industrial use [36],
[37], and open-source availability for reproducibility.

All models are initialized with ImageNet pre-trained weights
and fine-tuned with all layers trainable. Training runs for
up to 1,000 epochs, with early stopping triggered after 60
epochs without validation improvement. Standard models use
the Adam optimizer (81 = 0.9, B2 = 0.999), a weight decay
of 5x 10, an initial learning rate of 102, a minimum learning
rate of 10®, and a batch size of 64. The learning rate decays
by a factor of 10 if validation loss plateaus for 25 epochs.
YOLOv11 models follow the Ultralytics training procedure,
using stochastic gradient descent with three warm-up epochs
and a cyclic learning rate between 1072 and 10

In experiment (e/), models are trained separately for make,
model, and type classification using standard cross-entropy
loss. For the multitask setups in (e2) and (e3), each model
is extended with one classification head per task, and Grad-
Norm [28] adjusts task weights by monitoring gradient norms
at the last convolutional layer of the backbone. An auxiliary
Adam optimizer with a fixed learning rate of 107 is used,
with gradient norms clipped at 1 for numerical stability. We
set a = 1.5 to control task balancing. In (e3), hierarchical
regularization is introduced using KL-divergence penalties
applied to both (type, make) and (make, model) pairs.

All models are trained using the default YOLO image
classification augmentation pipeline’, which includes random
resized cropping to 224 x 224 pixels, horizontal flipping, and
RandAugment [39]. The latter applies two randomly selected
transformations drawn from a predefined set of geometric and
photometric operations at a fixed magnitude. During inference,
images are resized with preserved aspect ratio, then center-
cropped to 224 x 224 pixels and normalized.

Classification performance is assessed using two criteria.
First, per-task metrics — macro accuracy, micro accuracy,
and macro F1-score — assess both overall and class-balanced
performance for each attribute. Second, the hierarchical con-
sistency error measures the proportion of misclassified at-
tribute tuples that violate known hierarchical relationships. An
attribute tuple, defined as the set of predicted values for all
attributes, is deemed inconsistent if any value conflicts with
the hierarchy. All results are reported as averages across the
dataset splits.

V. REsuLTs AND DiscussioON

Table I reports the classification results for vehicle make,
model, and type across the three experimental setups (el,
e2, and e3). Higher values indicate better performance for
Micro-Accuracy (Mi-Acc), Macro-Accuracy (Ma-Acc), and
macro F1-Score (F1), while lower values are preferred for the
Hierarchical Consistency Error (HC-Err). As performance dif-
ferences may be small, all comparisons are based on pairwise

! Augmentation parameters are omitted for brevity. Full details are available
in the official Ultralytics documentation [38].

Wilcoxon signed-rank tests [40], [41] (p < 0.05) to assess
statistical significance.

The analysis begins with a separate evaluation of each ex-
periment. In (el), EfficientNet-V2 Small consistently delivered
the highest performance across all tasks, establishing itself as
the best single-task model. This trend continued in (e2), where
it again led in most metrics, although its advantage in vehicle
type recognition was not always statistically significant. The
only exception occurred in (e3), where it was outperformed
in type classification by both ResNet-50 and ResNet-101 in
terms of macro accuracy and Fl-score.

In contrast, the attention-based ViT model performed sig-
nificantly worse, especially on make and model recognition.
Furthermore, its large gap between micro and macro accuracy
indicates a strong bias toward majority classes. This lower per-
formance is likely due to the higher data volume requirements
of attention-based architectures. Consequently, this model was
excluded from experiments (e2) and (e3) result analysis.

Task-wise comparison revealed that type recognition
achieved the highest scores, followed by make and then model
classification. This reflects the increasing difficulty as the
number of classes grows (14 vehicle types, 26 makes, and
136 models), making finer distinctions more challenging. In
single-task settings, however, make and model recognition
often showed no statistically significant difference in macro
accuracy or Fl-score for the same classifier. This may be
due to feature overlap between visually similar makes and
models [3], which poses similar challenges when tasks are
learned independently.

When comparing results across experiments, models trained
under the multitask setup (e2) consistently outperformed
their single-task counterparts from (e/). This suggests that
jointly learning vehicle attributes can improve generalization
in FGVC. Notably, the gains were more pronounced in macro
metrics, indicating better handling of underrepresented classes.

Unlike the gains observed in (e2), most models in experi-
ment (e3) showed lower performance after hierarchical regu-
larization was applied. Nonetheless, all models saw reduced
hierarchical consistency error (HC-Err) in (e3). For instance,
EfficientNet-V2’s HC-Err dropped from 32.87% in the single-
task setup to 14.97% in the multitask setup, and further to just
4.10% when trained with hierarchical regularization. These
results show that enforcing attribute hierarchy leads to more
coherent predictions of related attributes.

Hierarchical regularization also influenced prediction con-
fidence. In the model recognition task using EfficientNet-
V2 Small, single-task and multitask models exhibited over-
confident predictions, while the hierarchical variant produced
a clearer distinction between correct and incorrect outputs
(see Fig. 3). A similar effect was observed in make recognition.
In contrast, type recognition showed minimal changes, likely
because it was used only as a reference attribute in the
regularization process.

Fig. 3 also reveals a shift in the overlap of confidence dis-
tributions. While the hierarchical setup showed greater overall
overlap between correct and incorrect predictions (= 43%)



TABLE 1
CLASSIFICATION RESULTS (%) FOR ALL MODELS ACROSS THREE EXPERIMENTAL SETUPS: (EI) SINGLE-TASK, (E2) MULTITASK, AND (E3) MULTITASK WITH
HIERARCHICAL REGULARIZATION. HIERARCHICAL CONSISTENCY ERROR (HC-ERR) IS ALSO REPORTED, WITH (E3) ACHIEVING THE LARGEST REDUCTION. BEST RESULTS
ARE IN BOLD; MULTIPLE BOLD ENTRIES WITHIN A COLUMN DENOTE NO STATISTICALLY SIGNIFICANT DIFFERENCE. RESULTS WERE AVERAGED OVER 10 RUNS, WITH
STANDARD DEVIATIONS IN PARENTHESES.

(el) single-task learning — separate models are trained independently for each attribute.

Make

Model Type

Classification Model HC-Err |
Mi-acc 1 Ma-acc 1 F1 1 Mi-acc 1 Ma-acc 1 F1 1 Mi-acc T Ma-acc 1 F1 1
EfficientNet-V2 Small [31] ~ 94.43 (0.57) 84.99 (1.63) 86.36 (1.44) 90.91 (0.63) 86.16 (1.08) 87.25 (0.76) 96.12 (0.66) 88.97 (1.97) 90.23 (1.58)  32.87 (1.74)
MobileNet-V3 Small [32] 91.27 (0.74) 77.99 (1.68) 80.19 (1.44) 86.52 (0.75) 79.16 (1.18) 80.90 (1.14) 95.15 (0.68) 85.61 (1.93) 87.41 (1.64) 36.84 (1.99)
ResNet-50 [33] 03.62 (0.51)  83.53 (1.73)  84.96 (1.08)  89.89 (0.87)  84.58 (1.21)  85.73 (0.79)  95.45 (0.61)  86.75 (2.34)  88.39 (1.90)  33.74 (1.80)
ResNet-101 [33] 93.80 (0.72) 83.49 (1.53) 85.01 (1.16) 90.20 (0.59) 84.87 (0.78) 86.09 (0.56) 94.69 (1.54) 84.64 (4.47) 85.92 (4.51)  32.09 (1.25)
ViT-B16 [34] 31.67 (1.68)  09.09 (3.43)  07.89 (3.04)  29.40 (1.71)  14.29 (3.58)  15.44 (3.51)  71.59 (1.52) 3252 (5.17)  34.70 (5.09)  63.07 (2.33)
YOLOV1I-nano-cls [35] 01.85 (0.99)  80.33 (2.81) 8222 (2.17)  86.23 (1.38)  79.60 (1.94)  80.41 (1.73)  94.31 (0.80)  85.51 (2.54)  86.50 (2.16)  40.15 (3.99)
YOLOv11-small-cls [35] 93.07 (0.62) 82.68 (1.99) 84.36 (1.55) 87.53 (0.99) 81.33 (1.80) 82.47 (1.38) 95.20 (0.53) 87.00 (1.85) 88.18 (1.35) 38.38 (2.51)
(e2) Multitask learning — a single model jointly predicts all attributes.
Classification Model Make Model Type HC-Err |
Mi-acc 1 Ma-acc T F1 1 Mi-acc 1 Ma-acc 1 F1 1 Mi-acc 1 Ma-acc 1 F1 1
EfficientNet-V2 Small [31]  95.85 (0.54) 87.61 (1.16) 89.30 (1.20) 91.35 (0.82) 86.89 (1.50) 87.83 (1.32) 97.01 (0.55) 89.87 (2.06) 91.45 (1.80) 14.97 (1.73)
MobileNet-V3 Small [32] 92.50 (0.64)  81.03 (1.83)  83.00 (1.53)  87.16 (0.83)  80.10 (1.29)  81.71 (1.04)  95.69 (0.68)  86.61 (1.90)  88.57 (1.69)  17.44 (1.68)
ResNet-50 [33] 95.14 (0.55)  86.49 (1.21)  87.82 (1.35)  90.40 (0.73)  84.72 (1.05)  86.26 (0.71)  96.62 (0.57)  88.61 (2.60)  90.46 (2.28)  16.75 (2.17)
ResNet-101 [33] 95.12 (0.51) 86.71 (1.01) 87.95 (1.10) 90.65 (0.66) 85.43 (0.95) 86.92 (0.79) 96.73 (0.63) 90.16 (2.63) 91.61 (2.20) 17.21 (1.39)
YOLOV11-nano-cls [35] 92.93 (0.59) 82.00 (1.73) 83.45 (1.44) 87.53 (0.84) 81.53 (1.15) 82.48 (0.75) 95.53 (0.76) 86.56 (2.51) 87.92 (2.22) 20.39 (1.75)
YOLOvI 1-small-cls [35] 93.72 (0.60)  84.08 (2.15)  85.52 (1.83)  88.47 (0.72)  83.07 (1.24)  83.71 (1.15)  95.86 (0.61)  86.55 (2.09)  88.40 (1.94)  19.18 (2.30)
(e3) Multitask with hierarchical regularization — KL-based penalties are applied to enforce consistency between related attribute predictions.
Classification Model Make Model Type HC-Err |
Mi-acc T Ma-acc T FI 1t Mi-acc T Ma-acc 1 FI 1t Mi-acc T Ma-acc 1 F1 1+
EfficientNet-V2 Small [31]  95.87 (0.55) 86.70 (2.18) 88.47 (1.70) 89.96 (1.36) 82.50 (1.36) 84.84 (1.29) 96.19 (0.69) 84.62 (2.71)  86.95 (2.17)  4.10 (0.89)
MobileNet-V3 Small [32] 91.61 (0.84) 76.62 (2.87) 80.13 (2.33) 83.34 (0.71) 70.80 (1.32) 75.60 (1.15) 94.26 (0.72) 82.65 (1.68) 84.96 (1.18) 5.54 (0.68)
ResNet-50 [33] 05.16 (0.64)  84.92 (1.87)  87.30 (1.61)  88.82 (0.70)  79.67 (1.26)  83.60 (0.93) 96.04 (0.67) 85.21 (2.41) 87.73 (2.12)  4.30 (0.86)
ResNet-101 [33] 95.29 (0.70) 84.99 (1.77) 87.64 (1.48) 89.09 (0.80) 80.30 (1.27) 83.85 (0.94) 96.22 (0.68) 85.90 (3.38) 88.36 (2.84) 4.41 (0.87)
YOLOvI 1-nano-cls [35] 93.31 (0.72)  80.38 (2.22)  83.19 (1.92)  85.64 (0.86)  74.42 (1.40)  77.99 (1.21)  94.70 (0.75)  79.42 (2.10)  81.36 (2.00)  6.43 (0.88)
YOLOV11-small-cls [35] 04.52 (0.57)  83.76 (1.95)  86.16 (1.57)  87.95 (0.89)  78.92 (1.43)  81.84 (1.03)  95.35 (0.71)  79.93 (2.68)  81.72 (2.33)  5.71 (1.00)
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(c) Multitask + hierarchical regularization setup.

Fig. 3. Confidence distributions for correct and incorrect predictions in vehicle
model recognition using EfficientNet-V2 Small (the best-performing model).
Confidence values are averaged over 10 runs, with distributions normalized
within each group (correct/incorrect).

than the single-task and multitask-only setups (= 27%), its
overlap occurred in the lower confidence range (0.4 to 0.5)
rather than the high-confidence range (0.9 to 1.0). This sug-
gests that hierarchical regularization promotes more cautious
predictions and can help improve classifier calibration.

VI. CoNcLUSIONS

This work-in-progress study explored how Multitask Learn-
ing (MTL) and hierarchical regularization can improve Fine-
Grained Vehicle Classification (FGVC) across three tasks:
make, model and type recognition. We proposed and evaluated
three experimental setups to isolate the effects of task interac-
tion and label hierarchy. The findings provide a foundation for
future research that leverages label hierarchies and explores
more advanced learning strategies in hierarchical fine-grained
visual classification.

Results indicated that multitask learning generally improved
classification performance across tasks and models. In con-
trast, hierarchical regularization did not always increase accu-
racy but consistently enhanced semantic consistency. This was
evident in a substantial reduction in hierarchical consistency
errors, dropping to 4% with the best-performing model. It also
led to more cautious and calibrated confidence distributions.
These findings highlight a trade-off between accuracy and
structured consistency, with important implications for the
reliability and interpretability of FGVC methods.

Future research should focus on: (i) expanding the dataset to
include finer-grained attributes such as subtypes, sub-models,
and production years; (ii) evaluating the impact of different
attribute pairings on classification performance to identify



optimal combinations; (iii) improving the balance between
accuracy and hierarchical consistency; and (iv) comparing
results with existing hierarchical fine-grained classification
methods. Moreover, leveraging hierarchical information to
develop general confidence calibration approaches represents
a promising avenue for exploration.
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