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Abstract—Vehicle recognition from images is crucial to Intelli-
gent Transportation System (ITS), supporting applications such
as tolling, access control, and forensics. Fine-Grained Vehicle
Classification (FGVC) extends this capability by identifying
vehicles by make, model, and type. However, research has largely
centered on four-wheeled vehicles, with motorcycles receiving
limited attention despite representing a substantial share of traffic
in many countries, including Brazil. This under-representation
can reduce ITS effectiveness and fairness. This work-in-progress
study addresses this gap by investigating Fine-Grained Motor-
cycle Classification (FGMC) in real-world ITS scenarios. We
evaluate seven deep learning architectures under two training
protocols for independent make and model classification. To
enable this, we augment a widely adopted dataset for Automatic
License Plate Recognition (ALPR) with motorcycle make and
model annotations. Results show that FGMC is feasible within
the studied context, yet performance is hindered by severe
class imbalance, underscoring the need for improved balancing
strategies. The results also reveal a drop in accuracy under
challenging conditions, particularly at night or in low-light
environments. Future directions include expanding the dataset
to more diverse scenarios and exploring FGMC integration with
ALPR to enhance overall vehicle identification accuracy.

I. INTRODUCTION

Recognizing vehicles from images is a key task in Intelligent
Transportation System (ITS), enabling applications such as
traffic management, automatic toll collection, and surveil-
lance. Fine-Grained Vehicle Classification (FGVC) focuses
on identifying vehicle attributes — such as make, model,
and type — which can enhance ITS solutions directly [1],
[2] or complement technologies like Automatic License Plate
Recognition (ALPR) to improve vehicle identification [3], [4].

Over the past decade, FGVC has advanced through
deep learning and the introduction of fine-grained vehicle
datasets [5], [6]. Nonetheless, research has focused predom-
inantly on four-wheeled vehicles, with motorcycles receiving
little attention. When considered, motorcycles are usually
classified into broad categories such as vehicle type (car,
motorcycle, truck) or motorcycle class (motorcycle, scooter,
tricycle) [7]-[9].

The few works addressing finer-grained labels often rely
on web-sourced images or do not assess motorcycles inde-
pendently from other vehicle types [10], [11]. While these
efforts mark an initial step toward Fine-Grained Motorcycle
Classification (FGMC), the task and its challenges remain
insufficiently understood.
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This oversight is concerning, as motorcycles represent a
substantial share of the vehicle fleet in many countries. In
Brazil, for example, the motorcycle fleet reached approxi-
mately 35 million vehicles, reflecting a 42% growth between
2014 and 2024 [12]. At the same time, thefts targeting
specific motorcycle models have become more frequent [13].
Inadequate representation of motorcycles in ITS applications
can compromise system accuracy and fairness, especially
when license plates are occluded or illegible [14]. Reliable
recognition of motorcycle make and model can strengthen
vehicle identification and support verification against official
records, which is essential for forensic and security purposes.

In response, this work-in-progress study aims to investi-
gate FGMC in depth. Specifically, we evaluate seven deep
learning architectures using two distinct training protocols
to independently classify motorcycle make and model. To
support this task, we extend a widely adopted ALPR dataset
by incorporating detailed motorcycle annotations, ensuring
alignment with ITS scenarios. Beyond reporting classification
performance, we perform an error analysis to better understand
both the overall behavior of the models and the challenges
inherent to by FGMC.

The results highlight that FGMC is more challenging than
traditional vehicle classification. Motorcycles present specific
difficulties, such as limited availability of rear-view images in
surveillance and fewer distinctive visual features. We hope this
study provides a foundation for future research, encouraging
the development of dedicated methods and datasets to improve
motorcycle recognition in real-world applications.

The remainder of this paper is structured as follows. Sec-
tion II reviews related work. Section III outlines the data
preparation process. Section IV describes the experimental
setup, presents the results, and discusses the initial limitations
and challenges of FGMC. Finally, Section V concludes the
study and outlines directions for future research.

II. RELATED WORK

FGVC has received substantial attention over the past
decade, with most research centered on four-wheeled vehicles.
This section first reviews key developments in the field, high-
lighting the breadth and depth of existing work. We then shift
focus to the relatively few studies on motorcycle classification
and position our work within this context.
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Early FGVC research relied on hand-crafted features com-
bined with traditional machine learning classifiers [15], [16].
With the rise of deep learning and the availability of large pub-
lic datasets [5], [6], Convolutional Neural Networks (CNNSs)
became the dominant approach, recently complemented by
Vision Transformers (ViTs). Much of the literature has focused
on enhancing classification accuracy and tackling broader chal-
lenges, such as out-of-distribution recognition within FGVC.

Despite these advances, fine-grained classification of mo-
torcycles remains largely unexplored. In most vehicle classi-
fication research that includes motorcycles, they are handled
as part of coarse vehicle-type recognition tasks, distinguishing
broad categories like cars, buses, and motorcycles. Only a few
studies, notably Khoba et al. [10] and Roomi et al. [11], have
investigated fine-grained motorcycle recognition focusing on
make and model classification.

In 2023, Khoba et al. [10] introduced the Fine-Grained
Vehicle Detection dataset, comprising 5, 502 images annotated
with 210 fine-grained classes and bounding boxes for 24,450
vehicles. Although motorcycles were not the primary focus, the
dataset includes two motorcycle makes and 11 models. Their
study evaluated object detection models and a hierarchical
YOLOVS variant. In 2024, Roomi et al [11] compiled a dataset
of 5,000 motorcycle images from various sources covering 27
motorcycle classes. They also approached the task using object
detection models.

While these studies represent progress toward FGMC,
important gaps remain. The dataset explored in [11] lacks
the realistic conditions typical of ITS, and the absence of
error analysis limits insight into the intrinsic challenges of
motorcycle make/model classification. The research described
in [10] is more comprehensive and includes error analysis,
but it considers relatively few motorcycle classes and does
not examine them in depth. Moreover, neither study evaluates
standard deep learning classification architectures commonly
adopted in FGVC.

This work-in-progress study addresses these gaps by in-
vestigating FGMC in real-world ITS scenarios. We evaluate
seven deep learning architectures and analyze the broader
characteristics and patterns of motorcycle recognition present
in this context. We aim to establish a foundation for future
research, fostering the development of specialized methods and
datasets to advance FGMC in practical applications.

III. DATA PREPARATION

This section describes the data process for adapting an
ALPR dataset (originally intended for license plate detection
and recognition) to the FGMC task. We selected the RodoSol-
ALPR dataset [17], which contains 20,000 images captured
by static cameras at toll booths on a Brazilian highway
(see Fig. 1). Of these, 10,000 images depict rear-view mo-
torcycles. The dataset was chosen based on: (i) its widespread
use in vehicle identification research [18]-[21]; (ii) its strong
alignment with a real-world ITS scenario; and (iii) its accurate
license plate annotations, which facilitate FGMC labeling and
enable future integration with ALPR research.

Fig. 1. Samples from the RodoSol-ALPR dataset [17], showcasing the
diversity of vehicles and lighting conditions. Images have been slightly resized
for improved visualization.

To prepare the dataset for FGMC, we applied filtering, stan-
dardization, and annotation steps. First, we removed all non-
motorcycle images, retaining the 10,000 original motorcycle
samples. Next, we excluded images where the motorcycle was
not clearly visible; that is, images captured under extremely
low light, with heavy occlusion, or with the motorcycle largely
out of frame (see Fig. 2). Tricycles were also excluded, as they
accounted for less than 0.003% of the data, and the focus is on
two-wheeled vehicles. After filtering, 8,556 images remained.
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Fig. 2. Motorcycle samples excluded due to: (a) extreme low-light conditions;
(b) heavy occlusion caused by its cargo box; and (c) motorcycle being largely
out of frame. Images have been slightly resized for better viewing.

To ensure consistency, all images were standardized to
show only the motorcycle, excluding background elements.
As the dataset lacked bounding box annotations, we used the
YOLOv11-small model [22] to detect and crop the motorcy-
cles. This model was chosen due to YOLO’s strong perfor-
mance, wide adoption in both academia and industry [23]-
[25], and its pretrained support for the motorcycle class. In 358
images where the model failed to produce valid detections, the
motorcycles were manually cropped.

To reduce redundancy, motorcycle images were grouped by
license plate and sorted by filename. A pruning heuristic was
then applied based on the number of images I available for
each motorcycle. If I < 3, all images were retained. If 3 < I <
10, only the first and last images were kept. If I > 10, the first
and last images were kept along with 10% of the remaining
images, evenly spaced across the set. Each motorcycle was
limited to a maximum of five images, with manual filtering
applied when the automatic pruning exceeded this limit. This
yielded a representative subset of 6,511 images.

We then carried out the annotation process by linking each
image to its corresponding license plate, thereby enabling
the automatic retrieval of vehicle metadata from a record
database via an API service. Out of 5,167 unique license
plates, 35 lacked complete information and were manually
annotated. With all images labeled, we proceeded to generate
two datasets — one for motorcycle make recognition and



another for model recognition — as the latter required slightly
different refinement criteria.

For model recognition, we adopted a higher-level grouping
strategy by categorizing motorcycles at the model-family level
rather than distinguishing between submodels. For example,
“Honda CG-125” and “Honda CG-150” were grouped under
a single class. This approach reduced class imbalance and
avoided underrepresented categories. However, it also required
the exclusion of Harley-Davidson motorcycles, whose models
could not be grouped consistently by us. Lastly, we removed
any make or model class with fewer than 25 unique vehicles.

The final output consists of two FGMC datasets': Motor-
cycleMake, with 6,230 images across 7 make classes; and
MotorcycleModel, with 5,827 images across 29 model classes.
Fig. 3 shows sample images shared by both datasets, illus-
trating the variety of conditions and the challenge of distin-
guishing visually similar motorcycles from a limited viewing
perspective. Finally, Fig. 4 presents the class distribution of
each dataset, revealing a long-tailed pattern typical of Brazilian
traffic, where a few makes/models dominate [26].
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Fig. 3. Samples appearing in both the MotorcycleMake and MotorcycleModel
datasets. The first and second text rows below each image show the motorcycle
make and model, respectively. These examples illustrate variations in lighting
conditions and capture angles. Images have been slightly resized for clarity.

IV. EXPERIMENTS AND RESULTS

This section presents the experimental evaluation of deep
learning models for motorcycle make and model recognition.
The objective is to assess model performance on the Motorcy-
cleMake and MotorcycleModel datasets separately and to ex-
amine the particularities of each task. The section is organized
as follows: Section IV-A outlines the experimental methodol-

IThe datasets used in this study, derived from RodoSol-ALPR [17] and
comprising a subset of images with FGMC annotations and corresponding
splits, are available upon request, with instructions for obtaining them provided
at: https://github.com/Lima001/UFPR-FGMC.
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(b) Class distribution in the MotorcycleModel dataset.

Fig. 4. Class distributions for the proposed datasets, highlighting their long-
tailed nature, where a small number of classes dominate.

ogy, and Section IV-B reports the classification results and
provides an analysis based on the best-performing classifier.

A. Methodology

For each classification task, we evaluated seven deep learn-
ing architectures: EfficientNet-V2 [27], MobileNet-V3 [28],
ResNet-50 [29], ResNet-101 [29], SwinTransformer-V2 [30],
ViT-B16 [31], and YOLOvlI-nano-cls [32] (a variant of
YOLO for classification). These models were chosen due
to their proven effectiveness in computer vision, widespread
adoption [19], [25], and availability of open-source implemen-
tations to facilitate reproducibility.

All models were initialized with ImageNet-pretrained
weights and fine-tuned with all layers unfrozen. The final fully
connected layer was replaced to match the number of classes in
the target dataset, and training was performed using the cross-
entropy loss function. Training was allowed to run for up to
1,000 epochs, with early stopping activated if no improvement
was observed on the validation set for 100 consecutive epochs.

For the standard models, the Adam optimizer was employed
with parameters 81 = 0.9 and S2 = 0.999, a weight decay of
5 x 104, an initial learning rate of 102, a minimum learning
rate of 10, and a batch size of 64. The learning rate was
reduced by a factor of 10 if the validation loss plateaued for
25 epochs. The YOLOv11 models followed the Ultralytics
training protocol, utilizing stochastic gradient descent with
three warm-up epochs and a cyclic learning rate oscillating
between 1072 and 10 following the cosine decay.


https://github.com/Lima001/UFPR-FGMC

TABLE 1
CLASSIFICATION PERFORMANCE (%) OF ALL MODELS ON THE M0TORCYCLEMAKE AND MOTORCYCLEMODEL DATASETS. RESULTS SHOW THE AVERAGE OF 10 RUNS WITH
STANDARD DEVIATIONS IN PARENTHESES; BEST OUTCOMES ARE HIGHLIGHTED IN BOLD. PROTOCOL (P2) EMPLOYS BALANCED SAMPLING, WHILE PROTOCOL (P1)
FOLLOWS STANDARD TRAINING WITHOUT BALANCING.

Models trained with protocol (pl)

Model MotorcycleMake MotorcycleModel

mi-acc ma-acc F1 mi-acc ma-acc F1
EfficientNet-V2 [27] 95,37 (0,59) 77,09 (3,51) 80,35 (2,29) | 94,62 (0,59) 85,50 (2,13) 86,83 (1,74)
MobileNet-V3 [28] 93,49 (0,50) 73,69 (2,59) 77,53 (2,36) 91,88 (0,74) 78,69 (3,05) 80,67 (2,59)
ResNet-50 [29] 90,50 (1,24) 57,61 (6,71) 59,31 (7,69) 92,80 (0,73) 81,16 (2,71) 82,39 (2,42)
ResNet-101 [29] 89,48 (0,64) 54,08 (2,23) 55,71 (3,10) 92,18 (1,17) 80,00 (3,18) 81,60 (3,34)
SwinTransformer-V2 [30] 76,92 (0,98) 37,35 (3,45) 41,99 (4,42) 67,73 (1,85) 36,22 (2,11) 40,47 (2,34)
ViT-B16 [31] 79,15 (0,82) 46,10 (3,67) 52,08 (3,64) 70,60 (1,06) 44,07 (1,53) 48,60 (2,00)
YOLOvV11-nano-cls [32] 93,25 (0,58) 71,91 (2,99) 75,88 (2,86) 91,18 (1.00) 77,54 (3,86) 78,90 (2,90)
Models trained with protocol (p2)
Model . MotorcycleMake . MotorcycleModel

mi-acc ma-acc F1 mi-acc ma-acc F1
EfficientNet-V2 [27] 94,65 (0,62) 77,55 (4,14) 81,19 (3,64) | 93,29 (0,60) 81,21 (2,24) 83,97 (2,02)
MobileNet-V3 [28] 91,42 (0,47) 70,11 (3,36) 74,72 (2,52) 90,65 (0,49) 76,08 (2,59) 79,14 (1,96)
ResNet-50 [29] 92,05 (1,11) 71,95 (3,43) 75,52 (2,96) 91,64 (0,73) 78,58 (3,18) 81,30 (2,45)
ResNet-101 [29] 91,16 (1,19) 70,62 (1,88) 74,07 (1,87) 90,61 (1,13) 76,30 (2,64) 78,67 (2,10)
SwinTransformer-V2 [30] 70,39 (3,10) 14,22 (0,24) 12,16 (0,73) 24,74 (13,8) 03,54 (0,43) 01,56 (0,56)
ViT-B16 [31] 70,50 (2,70) 14,25 (0,06) 11,91 (0,08) 23,47 (13,4) 17,10 (13,5) 12,96 (12,0)
YOLOv1 1-nano-cls [32] 91,87 (0,82) 71,38 (3,93) 73,36 (3,25) 89,39 (1,44) 76,25 (2,70) 77,48 (2,73)

All models were trained using the default YOLO image
classification augmentation pipeline [33], which consists of
random resized cropping to 224 x 224 pixels, horizontal flip-
ping, and RandAugment [34]. The latter applies two randomly
selected augmentations from a fixed set of geometric and
photometric transformations at a predetermined magnitude.
During inference, input images are resized while preserving
their aspect ratio, then center-cropped to 224 x 224 pixels
and normalized.

We adopted two training strategies: (pl) standard training
with data augmentation, and (p2) training with data augmenta-
tion and balanced sampling. In the second protocol, each class
contributes exactly 300 samples per epoch. Classes with fewer
images were oversampled by repeating samples before aug-
mentation, while larger classes were downsampled randomly.
This method maintains a balanced class distribution during
training, aiming to mitigate bias toward majority classes.

The dataset was split into five non-overlapping folds, en-
suring that all images of the same motorcycle (identified by
its license plate) remained within the same fold to avoid
data leakage [35]. The original class distribution was approx-
imately maintained across folds. From these, 10 unique train-
validation-test splits were generated by combining folds in a
3:1:1 ratio, such that each fold served as the test set twice. This
approach ensured a thorough and balanced evaluation across
the entire dataset.

To evaluate classification performance, we report macro ac-
curacy (ma-acc), micro accuracy (mi-acc), and Fl-score (F1).
These metrics capture both per-class and overall performance,
providing a balanced assessment across different class dis-

tributions. Final results are averaged over the dataset splits
and independently reported for MotorcycleMake and Motorcy-
cleModel. Since results can be close in value, we apply the
Wilcoxon signed-rank test [36] (p < 0.05) to compare the
models. This non-parametric test was chosen because it does
not assume normality, is suitable for paired data, and is robust
for small sample sizes [37].

B. Results

Table I reports classification results for all models on both
motorcycle make and motorcycle model recognition, under
training protocols (pl) and (p2). The highest score for each
metric in each scenario is shown in bold. EfficientNet-V2
achieved the best overall performance across all metrics and
scenarios. In contrast, attention-based models (i.e., ViT and
SwinTransformer) performed the worst, likely due to their
dependence on large training datasets and the class imbalance
in both datasets.

Balanced sampling in protocol (p2) produced mixed effects,
depending on the model architecture. For EfficientNet-V2,
MobileNet-V3, and YOLOI 1-nano-cls, performance changes
were generally small and slightly negative. Attention-based
models experienced notable drops in all metrics, reinforcing
their sensitivity to limited and imbalanced data. Conversely,
both ResNet-based models benefited in the make recognition
task, with macro metrics improving from below 60% to
above 70%.

Model recognition consistently outperformed make recog-
nition, even though the latter is a coarser classification task.
A likely explanation is the high intra-class variability in



makes, as different models from the same make can look
substantially different. This issue is amplified in the Motor-
cycleMake dataset, where models from certain makes share
visual characteristics with models from other makes.

Next, we analyze motorcycle behavior in the proposed
ITS scenario by focusing on the best-performing model,
EfficientNet-V2 trained under protocol (pl), which achieved
the highest overall metrics. First, we examine common classi-
fication errors for each task, then identify patterns and factors
influencing performance.

Fig. 5 shows the averaged confusion matrix for motorcycle
make recognition. As expected, the two most frequent classes
— Honda and Yamaha — achieved the highest accuracy.
BMW and Harley-Davidson ranked next, performing better
than Suzuki, Triumph, and Kawasaki, which showed notice-
ably lower accuracy. This is likely because BMW and Harley-
Davidson have distinctive and consistent design languages
across models, unlike the lower-performing makes.
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Fig. 5. Normalized confusion matrix for motorcycle make recognition.

For motorcycle model recognition, a notable trend emerges:
14 of the 15 most frequent misclassifications occurred between
models of the same make (see Fig. 6). Such errors often
involve motorcycles designed for the same market segment or
models that replaced earlier versions, reflecting the continua-
tion of a brand’s design language over time. The only exception
among the top 15 errors involving models from different makes
was motorcycles that competed in the same category.

Yamaha Fazer

Yamaha Factor

Fig. 6. Examples of the two motorcycle models most frequently misclassified:
Yamaha Factor (left) and Yamaha Fazer (right). Their overlapping visual
features and shared market segment highlight the challenges of distinguishing
between models from the same manufacturer.

A promising pattern involves low-light and nighttime im-
ages, which make up about 20% of both the MotorcycleMake

and MotorcycleModel datasets. These images account for
nearly one-third of all classification errors, indicating increased
difficulty under such conditions. This is expected because the
datasets primarily contain limited rear views of motorcycles,
showing rear lamps (brake and turn signals) and part of the
rear-lateral area. The classifier likely depends on these regions
for recognition?, but in low-light or nighttime images, visibility
is mostly limited to the rear brake light, making identification
more challenging (examples are shown in Fig. 7).

K

Daytime Nighttime
Honda Pop-100

Daytime

Nighttime

Kawasaki Ninja

Fig. 7. Comparison of motorcycle images captured in daytime and nighttime
conditions. Each pair shows the same make and model, labeled below.
Motorcycles are correctly recognized in daytime images but misclassified
at nighttime. Daytime images provide clearer visual details, while nighttime
views are mostly limited to rear brake lights, increasing classification difficulty
under low-light conditions.

We also conducted a preliminary analysis to assess whether
the presence of cargo boxes impacted classification perfor-
mance but found no clear pattern. This may be due to the
exclusion of heavily occluded motorcycles from the dataset.
However, this issue warrants further attention, as cargo boxes
are commonly used by riders in some countries (e.g., Brazil)
and can partially obscure key motorcycle features.

V. CoNcLUSIONS

This work-in-progress study investigates Fine-Grained Mo-
torcycle Classification (FGMC) within a real-world Intelligent
Transportation System (ITS) scenario. We evaluated seven
deep learning architectures on motorcycle make and model
recognition tasks under two training protocols, with an in-
depth analysis of the best-performing model (EfficientNet-
V2) to identify classification patterns and common errors.
This study lays a foundation for FGMC solutions and calls
for the inclusion of motorcycles in Fine-Grained Vehicle
Classification (FGVC) research.

Our findings highlight three main points: (i) fine-grained
classification of motorcycles at both make and model levels
is achievable in ITS contexts and merits further focus within
the FGVC community; (ii) severe class imbalance remains a
critical challenge, emphasizing the need for improved data bal-
ancing or augmentation methods; and (iii) there is significant
room for improvement, especially under challenging conditions
like nighttime and low-light imagery.

Future work will expand the dataset to cover more diverse
ITS environments beyond toll booths. Additionally, integrating
FGMC with related ITS tasks such as license plate recognition

2We do not have direct evidence; however, given the limited rear view in the
images, it is a plausible assumption. Further investigation would be valuable
to confirm this and provide deeper insights.



offers a promising path to enhance overall vehicle identifi-
cation accuracy. Finally, applying interpretability techniques
to better understand the visual features driving classification
decisions will further advance FGMC development.
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