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Abstract. Recent advancements in super-resolution for License Plate Recognition (LPR) have sought to address
challenges posed by low-resolution (LR) and degraded images in surveillance, traffic monitoring, and forensic appli-
cations. However, existing studies have relied on private datasets and simplistic degradation models. To address
this gap, we introduce UFPR-SR-Plates, a novel dataset containing 10,000 tracks with 100,000 paired low and
high-resolution license plate images captured under real-world conditions. We establish a benchmark using mul-
tiple sequential LR and high-resolution (HR) images per vehicle – five of each – and two state-of-the-art models
for super-resolution of license plates. We also investigate three fusion strategies to evaluate how combining predic-
tions from a leading Optical Character Recognition (OCR)model for multiple super-resolved license plates enhances
overall performance. Our findings demonstrate that super-resolution significantly boosts LPR performance, with fur-
ther improvements observed when applying majority vote-based fusion techniques. Specifically, the Layout-Aware
and Character-Driven Network (LCDNet) model combined with the Majority Vote by Character Position (MVCP)
strategy led to the highest recognition rates, increasing from 1.7% with low-resolution images to 31.1% with super-
resolution, and up to 44.7% when combining OCR outputs from five super-resolved images. These findings under-
score the critical role of super-resolution and temporal information in enhancing LPR accuracy under real-world,
adverse conditions. The proposed dataset is publicly available to support further research and can be accessed at:
https://valfride.github.io/nascimento2025toward/.
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1 Introduction

License Plate Recognition (LPR) systems have become in-
creasingly popular across various practical applications, such
as traffic monitoring and toll collection [Laroca et al., 2021;
Ke et al., 2023; Liu et al., 2024b]. These systems are
designed to accurately recognize characters on a License
Plate (LP) after it has been detected within an image.

While recent studies on LPR have reported high recog-
nition rates, the results are primarily based on experiments
using high-resolution (HR) images, where the LP characters
are clearly defined and free from significant noise [Silva and
Jung, 2022; Laroca et al., 2023b; Rao et al., 2024]. However,
accurately recognizing characters in low-resolution (LR) or
degraded images remains a significant challenge.

In surveillance scenarios, images are often captured at low
resolutions or are heavily compressed due to constraints in
storage and bandwidth. Hence, LP characters may become
distorted, blend into the background, or overlap with neigh-
boring characters, making recognition challenging. This un-
derscores the need for robust methods that can effectively
handle these types of degradation.

Taking this into account, various image enhancement tech-
niques, including super-resolution (SR), have been proposed
to improve image quality [Moussa et al., 2022; Nascimento

et al., 2023, 2024a; Pan et al., 2024]. Although these tech-
niques aim to improve LPR, their performance is frequently
assessed using metrics such as Structural Similarity Index
Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR),
which are known not to correlate well with human assess-
ment of visual quality or recognition accuracy [Johnson et al.,
2016; Zhang et al., 2018; Mehri et al., 2021; Liu et al., 2023].
Furthermore, most studies relied solely on private datasets
[Hamdi et al., 2021; Maier et al., 2022; Luo et al., 2024],
hindering fair comparisons. Many also adopted simplistic
degradation models, where LR images were created by sim-
ply downsampling the original HR images [Nascimento et al.,
2022; Kim et al., 2024; Pan et al., 2024].

In response to these limitations, we introduce a new
publicly available dataset, UFPR-SR-Plates1. It comprises
100,000 LP images captured by a rolling shutter camera in-
stalled on a Brazilian road. UFPR-SR-Plates includes 10,000
LP tracks, each consisting of ten consecutive images – five
LR images captured when the vehicle was farthest from the
camera, and five HR images captured at its closest point.
These tracks, recorded under varying environmental and
lighting conditions, feature two distinct LP layouts: Brazil-
ian and Mercosur. Unlike synthetically generated datasets,

1The UFPR-SR-Plates dataset is publicly available at https://
valfride.github.io/nascimento2025toward/
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UFPR-SR-Plates offers a more accurate representation of
surveillance scenarios and makes it a valuable resource for
advancing LP super-resolution research.

In summary, the main contributions of this work are:

• A publicly available dataset containing 100,000 images,
divided into 10,000 tracks, with each track containing
five LR images and five HR images of the same LP. To
enhance variability, 5,000 tracks were collected at a res-
olution of 1280×960 pixels, while the remaining 5,000
tracks were captured at 1920× 1080 pixels. The dataset
is evenly distributed between Mercosur and Brazilian
LPs, making it the largest dataset in terms of the num-
ber of LPs for both layouts;

• We conducted benchmark experiments on the pro-
posed dataset using five state-of-the-art super-resolution
models: (i) general-purpose approaches (SR3 [Saharia
et al., 2023], Real-ESRGAN [Wang et al., 2021]), and
(ii) LP-specialized networks (LPSRGAN [Pan et al.,
2024], PLNET [Nascimento et al., 2024a], and LCD-
Net [Nascimento et al., 2024b]). For each track, we gen-
erated five super-resolved images from the LR images
and compared the recognition results obtained by the
leading Optical Character Recognition (OCR) model,
GP_LPR [Liu et al., 2024b]. The super-resolution pro-
cess significantly boosted recognition accuracy, increas-
ing from 2.2% to 29.9% for a single super-resolved im-
age. To further enhance LPR performance, we explored
three fusion strategies for combining the outputs from
the OCR model based on multiple super-resolved im-
ages. Notably, applying the Majority Vote by Charac-
ter Position (MVCP) strategy with five super-resolved
images improved the recognition rate from 29.9% to
42.3%. The proposed dataset enables the exploration of
temporal relationships among low-resolution LPs, as it
includes multiple sequential LR images for each LP.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a brief review of related works. In Section 3,
we introduce the UFPR-SR-Plates dataset. The experiments
are detailed in Section 4. Finally, Section 5 concludes the pa-
per by summarizing our findings and their significance.

2 Related Work
This section provides an overview of relevant works in LPR
and LP super-resolution. More specifically, Section 2.1 cov-
ers recent advancements and techniques in LPR, highlight-
ing key innovations and their impact on recognition accu-
racy. Section 2.2 discusses the integration of super-resolution
methods with LPR, focusing on their role in improving the
recognition of low-quality or degraded LP images.

2.1 License Plate Recognition (LPR)
The primary goal of LPR is to accurately identify characters
from a given LP image. To tackle this challenge, Silva and
Jung [2020] proposed treating the LPR stage as an object
detection task, where each character class is identified as a

distinct object. They introduced CR-NET, a model based on
YOLO [Redmon et al., 2016], which has shown significant
effectiveness for LPR in subsequent studies [Laroca et al.,
2021; Oliveira et al., 2021; Silva and Jung, 2022].

Recently, advancements in the field have moved toward
holistic treatment of the entire LP image for text recognition,
departing from traditional segmentation methods that isolate
individual characters. This shift has improved recognition ac-
curacy while also enhancing computational efficiency. For
instance, Ke et al. [2023] introduced a lightweight, multi-
scale LPR network that integrates global channel attention
layers to effectively fuse low- and high-level features.

To address real-world challenges, such as substantially
tilted LPs caused by suboptimal camera positioning, recent
research has focused on incorporating attention mechanisms
into deep learning models. Rao et al. [2024] integrated at-
tention mechanisms into a CRNN model, while Liu et al.
[2024a] introduced deformable spatial attention modules to
enhance feature extraction and capture the LP’s global lay-
out. Building on this, Liu et al. [2024b] presented a robust
OCR model called Global Perception License Plate Recogni-
tion (GP_LPR) for recognizing irregular LPs through the use
of deformable spatial attention and global perception mod-
ules (this model is further detailed in Section 4.1). These ad-
vancements collectively address challenges such as attention
deviation and character misidentification, leading to state-of-
the-art performance on popular datasets such as CCPD [Xu
et al., 2018] and RodoSol-ALPR [Laroca et al., 2022].

Although these models have reported impressive accuracy
and inference speed, most evaluations were conducted on
datasets where all LP characters are clearly legible, even on
challenging scenarios involving tilted LPs. This setup, how-
ever, does not accurately reflect real-world surveillance en-
vironments, where cost-effective cameras are typically used
and bandwidth limitations often degrade image quality. Con-
sequently, LR images with blurry characters that blend into
adjacent ones and the LP background are prevalent, posing
a substantial challenge for robust LPR [Moussa et al., 2022;
Ke et al., 2023; Schirrmacher et al., 2023].

2.2 Super-Resolution for LPR

The quality of an image is affected by various factors, in-
cluding lighting, weather, camera distance, motion blur, and
storage techniques, each introducing unique noise patterns.
These factors, combined with the structural variability in low-
resolution LPs, make it challenging for LPR systems to ac-
curately identify characters in such images. Although recent
advancements in SR methods have shown potential in im-
proving character visibility in low-quality images [Liu et al.,
2023], the specific challenges related to LPR under degraded
conditions remain largely unaddressed [Maier et al., 2022;
Hijji et al., 2023; Angelika Mulia et al., 2024].

To address these challenges, Lin et al. [2021] proposed
an ESRGAN-based [Wang et al., 2019] approach for LP im-
age enhancement called PatchGAN. This method leverages a
residual dense network with progressive upsampling to pre-
serve high-frequency details effectively. While PatchGAN
achieved impressive PSNR and SSIMvalues, its performance



gains over other Generative Adversarial Network (GAN)-
based methods (e.g., SRGAN [Ledig et al., 2017]) were rel-
atively modest, and the model’s complexity may limit its ap-
plicability in real-time scenarios.

Expanding on this, Hamdi et al. [2021] proposed an ap-
proach called Double Generative Adversarial Networks for
Image Enhancement and Super-Resolution, which employs
two sequential networks: the first to deblur the image and
the second to apply super-resolution, yielding the final out-
put. While their approach demonstrated effectiveness, it was
only tested on synthetically generated low-resolution images
created from high-resolution LPs.

Recognizing the gap in integrating character recognition
into the SR process, Lee et al. [2020] introduced a perceptual
loss based on features extracted from scene text recognition
models. Specifically, they leveraged intermediate representa-
tions from ASTER [Shi et al., 2019] to train a model based
on GANs. Their experiments showed that adding this percep-
tual loss improved results compared to models trained with-
out it. However, a lack of detailed information on datasets and
degradation methods hinders the reproducibility and general-
ization of their approach.

Building on these developments, Pan et al. [2023] in-
troduced a complete pipeline for the SR of LPs followed
by recognition, utilizing ESRGAN [Wang et al., 2019] for
single-character enhancement. Their method demonstrated
effectiveness with moderately low-quality LPs, nevertheless,
it struggledwith severely degraded images, particularly when
character boundaries were unclear. To overcome these chal-
lenges, Pan et al. [2024] developed LPSRGAN, which pro-
cesses the entire LP image and incorporates a degradation
model that generates more realistic low-resolution LPs. De-
spite these improvements, LPSRGAN still struggled to recon-
struct characters under severely degraded conditions.

Kim et al. [2024] introduced AFA-Net, an architecture that
integrates deblurring sub-networks at both the pixel and fea-
ture levels. Their method was evaluated on a dataset con-
taining low-resolution and blurred LP images captured from
unconstrained dash cams. While the results were promising,
the LR images were artificially generated through simple in-
terpolation, and the testing protocol focused solely on super-
resolving digits, excluding letter recognition. This limits the
generalizability of their approach to real-world LP images.

Luo et al. [2024] designed a domain-specific degradation
model to simulate real-world LP degradations, incorporat-
ing common factors such as motion blur, lighting issues, and
noise. By retraining ESRGAN on a dataset of high-resolution
LPs with these simulated degradations, they achieved robust
recognition performance. This success highlights themodel’s
effectiveness in controlled settings where degradation types
are aligned with the training data. However, when confronted
with unconstrained real-world scenarios, with severe occlu-
sion, extreme lighting variations, or unforeseen blur, the
method struggled to preserve accurate character structure, in-
dicating that further refinement is necessary for application
in complex, real-world settings.

AlHalawani et al. [2024] recently introduced DiffPlate, a
diffusion model for LP super-resolution that outperformed
ESRGAN and SwinIR [Liang et al., 2021] in terms of PSNR

and SSIM. However, its high computational cost restricts its
real-time applicability in surveillance systems. Furthermore,
the model was trained and tested using synthetically gener-
ated images, where high-resolution LPs were downsampled
by a factor of four to produce low-resolution counterparts.

Nascimento et al. [2023, 2024a] introduced the Pixel-
Level Network (PLNET), a super-resolution model that em-
ploys specialized attention modules to enhance the qual-
ity of LP images. While PLNET showed potential in im-
proving character clarity in LR scenarios, the experiments
were limited to synthetically generated LP images. In sub-
sequent research, the same authors [Nascimento et al.,
2024b] developed the Layout-Aware and Character-Driven
Network (LCDNet), which further improved character struc-
ture and positioning in LP layouts through deformable convo-
lutions, shared-weight attention modules, and a GAN-based
approach with an OCR discriminator and a layout-aware
perceptual loss. Although this latter study included prelimi-
nary experiments with real-world images, the dataset was not
made publicly available, which limits reproducibility. Both
PLNET and LCDNet are described in more detail in Sec-
tion 4.1, as they are utilized in our experiments.

Sendjasni and Larabi [2024] proposed RDASRNet, a
framework designed for extreme license plate SR (with a
×16 scaling factor). The architecture integrates a hierarchi-
cal channel attention mechanism that iteratively refines fea-
tures extracted from LR inputs. To enhance training, a dual-
loss strategy was employed – combining mean squared error
with a contrastive loss guided by a Siamese network. This
approach enforces perceptual and structural consistency be-
tween the super-resolved outputs and HR ground-truth im-
ages within a latent space. While RDASRNet achieves state-
of-the-art performance on synthetic benchmarks, its high
computational cost poses challenges for real-time deploy-
ment in surveillance systems. Furthermore, its reliance on
synthetic training data – where LR images are generated via
idealized downsampling – raises concerns about its general-
izability to real-world degradations, a limitation shared with
other studies [Pan et al., 2023; AlHalawani et al., 2024].

In summary, while substantial progress has been made in
super-resolution techniques for LPR, a major barrier to fur-
ther advancement is the limited availability of public datasets
containing paired low- and high-resolution LPs. Most exist-
ing research relies on either proprietary datasets [Lee et al.,
2020; Hamdi et al., 2021; Maier et al., 2022; Pan et al., 2024]
or synthetically generated LR images [Pan et al., 2023; AlHa-
lawani et al., 2024; Kim et al., 2024; Luo et al., 2024; Send-
jasni and Larabi, 2024].

3 The UFPR-SR-Plates Dataset
The UFPR-SR-Plates dataset comprises 10,000 tracks, each
with five consecutive LR images and five consecutive HR im-
ages of the same LP. With a total of 100,000 images, this
dataset is well-suited for SR and LPR tasks. It offers real-
world images captured under diverse noise and degradation
conditions, while enabling direct LR-HR comparison and
analysis of temporal variations within frame sequences.

The images were taken with a rolling shutter camera near



Figure 1. Examples of scenarios from which the LP images in the UFPR-SR-Plates dataset were extracted. These images showcase a variety of vehicle types
and their corresponding LPs, captured under different environmental conditions. The first row shows images taken with a resolution of 1280 × 960 pixels,
while the second row displays images captured at 1920 × 1080 pixels. For better visualization, all images in this figure were slightly resized.

LR Images HR Images

Figure 2. Examples of tracks from the UFPR-SR-Plates dataset. Each track comprises five consecutive LR images and five consecutive HR images of the
same LP, captured under varying conditions. Each row shows a single track, with the LR images displayed on the left and the corresponding HR images on
the right. We remark that even what we consider ‘HR’ in the context of this work is of lower quality than the datasets typically used in LPR research.

the Department of Informatics at the Federal University of
Paraná in Curitiba, Brazil, simulating real-world surveillance
conditions. Figure 1 presents sample images collected to
build the UFPR-SR-Plates dataset (i.e., prior to LP detection
and extraction), highlighting the diversity of vehicle types,
including cars, buses, and trucks.

Data collection occurred over six months, with images cap-
tured daily during a fixed 10-hour interval, from 7 a.m. to
5 p.m. Nighttime images were excluded due to infrared inter-
ference, which often caused overexposure or underexposure,
making LP recognition challenging even in HR images.

The original images were evenly distributed between two
video resolutions: 1280 × 960 pixels and 1920 × 1080 pix-
els. This variation in resolution enables the extraction of LPs
with different pixel densities, allowing for a broader evalu-
ation of SR methods across varying image quality. Conse-
quently, UFPR-SR-Plates becomes more versatile for tasks
that require adaptation to different levels of detail.

The proposed dataset is also balanced between two LP lay-
outs: Brazilian and Mercosur. Brazilian LPs follows a format
of three letters followed by four digits, while Mercosur LPs
features three letters, one digit, one letter, and two digits. Al-
though both types of LPs are similar in size and shape, they
differ significantly in color schemes and character fonts.

As shown in Figure 3, vehicle tracks were derived from
video footage capturing vehicles entering and exiting the road
from opposite sides. To detect and track vehicles, we em-
ployed the YOLOv8 model [Ultralytics, 2023], a choice mo-
tivated by the proven effectiveness of the YOLO family in ob-
ject detection in unconstrained scenarios [Lima et al., 2024;
Laroca et al., 2021, 2025]. We fine-tuned the model to meet

our specific needs, starting with a pre-trained version and col-
lecting initial bounding box annotations for detected vehicles.
After each detection round, we carefully reviewed and man-
ually corrected any annotation errors, incorporating these ad-
justments into the training set and retraining the model. This
iterative process progressively improved detection accuracy,
culminating in a refined dataset of 2,954 labeled images tai-
lored to our application.

We cropped each vehicle’s region of interest using the an-
notations from the process described above. Subsequently,
we applied IWPOD-NET [Silva and Jung, 2022] to locate
the LP corners. Although IWPOD-NET is a well-regarded
method for this task [Jia and Xie, 2023; Wei et al., 2024], its
original training on high-quality images limited its effective-
ness in our dataset, particularly for vehicles at greater dis-
tances. To overcome this limitation, we retrained IWPOD-
NET from scratch with optimized hyperparameters, signif-
icantly improving its robustness in detecting LPs from dis-
tant vehicles. More specifically, we started with an initial
set of 300 annotated LPs to train the IWPOD-NET model.
Through an iterative process, we tested the model on new im-
ages, corrected any errors, and progressively expanded the
training set with these refined annotations. After several it-
erations, we conducted a final training phase with 839 im-
ages, ensuring precise LP corner detection considering our
scenario. We then applied the model to extract LPs using
a minimum bounding box method, adding 20% padding to
both vertical and horizontal dimensions to capture contex-
tual surroundings.

From the resulting sequences, we selected the five LR im-
ages that were farthest from the camera. To annotate the LP
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Figure 3. Illustration of the process of vehicle identification and tracking using YOLOv8 [Ultralytics, 2023], followed by LP corner detection with IWPOD-
NET [Silva and Jung, 2022]. LP images were extracted from the original frames based on the detected corners. A multi-task OCR model, proposed by
Gonçalves et al. [2018], was applied to recognize the text on the extracted LP images. Majority voting was applied to determine the final label. The blue lines
in the original images demarcate the regions for detecting low-resolution LPs (above the higher line) and high-resolution LPs (below the lower line).

characters, we employed the multi-task OCR developed by
Gonçalves et al. [2018] on each of the five HR samples in
the track, utilizing a sequence-level majority vote strategy.
Figure 2 shows all LP images from five tracks in the dataset.

Each image within a track is also accompanied by a JSON
file containing the coordinates (𝑥, 𝑦) of its four corners, the
layout of the LP (Brazilian or Mercosur), and its textual con-
tent (e.g., ABC-1234). Table 1 presents a summary of key sta-
tistical characteristics for each layout across both resolutions
in the UFPR-SR-Plates dataset, including the median, maxi-
mum, and minimum dimensions, as well as the total number
of unique LPs.

Table 1. Summary of statistics (in pixels) for Brazilian and Merco-
sur LPs across resolutions in the UFPR-SR-Plates dataset.

UFPR-SR-Plates
1280 × 960 1920 × 1080

Brazilian Mercosur Brazilian Mercosur
LR HR LR HR LR HR LR HR

Median Height 19 34 18 32 21 50 21 38
Median Width 35 69 35 67 49 100 49 100
Max Height 28 60 25 49 28 52 26 52
Min Height 15 22 13 23 14 26 16 26
Max Width 56 103 59 88 35 122 61 122
Min Width 26 51 24 50 34 71 34 71

Unique LPs 1,663 2,500 1,627 2,496

Although the dataset acquisition process was automated,
all annotations were manually reviewed to ensure the relia-
bility of the UFPR-SR-Plates dataset for research purposes.
Despite the popularity of the chosen OCR model in the lit-
erature [Gonçalves et al., 2019; Nascimento et al., 2024b],
we found that it produced errors in approximately 5% of the
tracks. These errors were rectified during the aforementioned
analysis process.

For the experimental protocol, we divided each resolu-
tion set (1920 × 1080 and 1280 × 960 pixels) into approx-

imately 40%, 20%, and 40% for training, validation, and
testing, respectively. This resulted in 3,965 tracks for train-
ing, 2,030 for validation, and 4,005 for testing. Note that
the number of tracks in the training, validation, and test sets
does not conform to the exact ratios of 4,000/2,000/4,000 im-
ages, as we carefully avoided any overlap of LPs across the
training, validation, and test sets, even when the same vehi-
cle/LP was depicted in images of different resolutions. For
instance, if the LP “ABC-1234” is included in the training
set, it is strictly excluded from both the test and validation
sets. As demonstrated by Laroca et al. [2023a], the presence
of near-duplicate LP images across different subsets can arti-
ficially inflate model performance. By preventing such over-
laps, UFPR-SR-Plates creates a fair and reliable resource for
training, validating, and testing deep learning-based models.

Regarding privacy concerns, LPs of vehicles registered in
Brazil are not associated with the personal information of the
vehicle owner, thus mitigating the risk of privacy breaches.
Each LP uniquely identifies the vehicle itself [Presidência da
República, 2014; Oliveira et al., 2021].

4 Experimental Results
This section delves into the experimental details of this work.
Section 4.1 introduces the models employed, providing an
overview of the framework and key hyperparameters. Sec-
tion 4.2 outlines the fusion strategies implemented to com-
bine the predictions generated by theOCRmodel formultiple
super-resolved images, aiming to enhance LPR performance.
Finally, Section 4.3 presents and discusses the results.

All experiments were conducted on a computer equipped
with an AMDRyzen 5950X 3.4 GHz CPU, 128 GB of RAM,
an SSD with read speeds of 535 MB/s and write speeds of



445 MB/s, and an NVIDIA Quadro RTX 8000 GPU (48 GB).

4.1 Models
We applied the GP_LPR model [Liu et al., 2024b] to LPR
on super-resolved images generated from the LR images in
the UFPR-SR-Plates dataset. The SR process was conducted
using five state-of-the-art networks: (i) two general-purpose
models: Real-ESRGAN [Wang et al., 2021] and SR3 [Sa-
haria et al., 2023], and (ii) three LP-specialized models LP-
SRGAN [Pan et al., 2024], PLNET [Nascimento et al., 2023,
2024a], and LCDNet [Nascimento et al., 2024b].

The chosen models achieved state-of-the-art performance
in both general SR tasks [Saharia et al., 2023; Luo et al.,
2024] and LP-specific SR tasks [Nascimento et al., 2023; Pan
et al., 2024]. Due to the absence of an official implementa-
tion, we reimplemented LPSRGAN based on the methodol-
ogy described by Pan et al. [2024]. The code for all models
is publicly available2 ,3 ,4 ,5 ,6.

The GP_LPR model focuses on LPR of irregular LPs, em-
ploying attention mechanisms to handle perspective distor-
tion. Central to its architecture is the global perception mod-
ule, which enhances character feature completeness by incor-
porating global visual information. This facilitates global in-
teraction among features, distinguishing characters with sim-
ilar structures and minimizing misidentifications. Addition-
ally, the model employs the Deformable Spatial Attention
Module, featuring deformable convolution layers that adjust
to variations in character positions and shapes, improving the
network’s ability to capture the overall layout of LPs.

Real-ESRGAN [Wang et al., 2021] extends ESR-
GAN [Wang et al., 2018] by introducing a high-order
degradation model tailored for real-world scenarios. Unlike
traditional approaches, it trains exclusively on synthetically
degraded data generated through a rigorous pipeline that
applies multiple degradation steps – including blurring,
noise injection, resizing, and compression. A key inno-
vation lies in its artifact suppression mechanism, which
employs filtering to mitigate distortions introduced during
degradation simulation. The framework adopts a U-Net
discriminator with spectral normalization to stabilize ad-
versarial training. Training proceeds in two stages: first,
a PSNR-oriented optimization ensures structural fidelity,
followed by a perceptual refinement stage to enhance visual
quality. This methodology has demonstrated state-of-the-art
performance in general image restoration, validating the
effectiveness of synthetic degradation modeling for practical
super-resolution tasks.

SR3 [Saharia et al., 2023] takes a distinct approach by
framing super-resolution as a diffusion process. Unlike com-
monGAN-based methods, Super-Resolution via Iterative Re-
finement (SR3) iteratively refines a noisy input image into a
high-resolution output through aMarkov chain. This stochas-
tic refinement enables the model to explore multiple plausi-
ble reconstructions, particularly advantageous for recovering

2GP_LPR: https://github.com/mmm2024/gp_lpr/
3PLNET: https://github.com/valfride/lpr-rsr-ext/
4LCDNet: https://github.com/valfride/lpsr-lacd/
5Real-ESRGAN: https://github.com/xinntao/Real-ESRGAN/
6LPSRGAN: https://github.com/valfride/lpsrgan/

fine-grained details in severely degraded LP images. The iter-
ative process is guided by a noise prediction network trained
to reverse a predefined degradation schedule, making SR3
robust to diverse noise types and compression artifacts.

LPSRGAN [Pan et al., 2024] enhances LPR accuracy in
unconstrained scenarios through a three-pronged approach.
It introduces an n-stage random combination degradation (n-
RCD) model to simulate real-world degradations like blur,
noise, and compression via multi-stage randomized com-
binations, addressing limitations of simplistic degradation
pipelines. The framework adopts a modified RRDBNet+
generator, building on Residual-in-Residual Dense Blocks
(RRDB) [Wang et al., 2019] with dropout layers to improve
feature representation and generalization across LP layouts.
To prioritize character clarity for recognition systems, LPSR-
GAN employs a perceptual loss optimized for LPR, aligning
super-resolved images with a Connectionist Temporal Classi-
fication loss to optimize character clarity by aligning super-
resolved images with OCR output predictions. This integra-
tion of realistic degradation modeling, architectural enhance-
ments, and task-specific optimization enables robust restora-
tion of degraded LPs, particularly under severe real-world
distortions.

The PLNET model builds upon the foundation laid
by Mehri et al. [2021], introducing refinements specifically
tailored for LP super-resolution. It incorporates a shallow fea-
ture extractor module, using an autoencoder equipped with
PixelShuffle and PixelUnshuffle layers [Shi et al., 2016] to
efficiently extract shallow features while preserving essen-
tial information through skip connections. PLNET also inte-
grates a mechanism to capture inter-channel and spatial rela-
tionships, thus improving themodel’s ability to rearrange and
scale input data more effectively than conventional methods.

LCDNet employs deformable convolutions and shared-
weight attentionmodules within a GAN framework. AnOCR
model acts as the discriminator, steering the super-resolution
process toward prioritizing LPR accuracy. During training,
LCDNet optimizes a loss function designed to preserve char-
acter structure and the overall integrity of the LP layout (e.g.,
penalizing any confusion between letters and digits). This en-
sures both visually clear and accurate LP recognition.

Here we detail the key hyperparameters used for train-
ing the models, all implemented using the PyTorch frame-
work. The hyperparameters were selected based on the prior
works [Saharia et al., 2023; Pan et al., 2024; Wang et al.,
2021; Nascimento et al., 2024a,b; Liu et al., 2024b] and
preliminary experiments conducted on the validation set
of the proposed dataset. For all models, we employed the
Adam optimizer. In LPSRGAN [Pan et al., 2024], we re-
placed the original HyperLPR3 OCR with Gonçalves et al.
[2019]’s multi-task model trained on UFPR-SR-Plates (en-
suring fair comparison as HyperLPR3 was trained on Chi-
nese plates with unavailable source code), using genera-
tor/discriminator learning rates of 10−4/10−5 respectively.
Real-ESRGAN [Wang et al., 2021] followed its standard two-
stage protocol: PSNR-oriented pretraining for 106 iterations
(𝑙𝑟 = 2×10−4) followed by GAN fine-tuning for 4×105 it-
erations (𝑙𝑟 = 1×10−4), with EMA stabilization and U-Net
discriminator. SR3 [Saharia et al., 2023] employed 100 de-
noising steps across 106 training iterations (𝑙𝑟 = 1×10−4),

https://github.com/mmm2024/gp_lpr/
https://github.com/valfride/lpr-rsr-ext/
https://github.com/valfride/lpsr-lacd/
https://github.com/xinntao/Real-ESRGAN/
https://github.com/valfride/lpsrgan/


incorporating Gaussian blur augmentation on low-resolution
inputs. For both LCDNet and PLNET, the initial learning rate
was set to 10-4, decaying by a factor of 0.8 when no improve-
ment in the loss function was observed. For the GP_LPR
model, the maximum decoding length was set to 𝐾 = 7 to
match the 7-character format of the LPs in the UFPR-SR-
Plates dataset. To mitigate training oscillations in GP_LPR,
following Liu et al. [2024b], we applied a step learning rate
scheduler starting with an initial learning rate of 10-3 and de-
caying by a factor of 0.8 every 50 epochs.

Additionally, we added padding with gray pixels to both
the LR and HR images to preserve their aspect ratio before
resizing them to dimensions of 16 × 48 and 32 × 96 pixels,
respectively, corresponding to an upscale factor of 2.

4.2 Fusion Methods
Inspired by the work of Laroca et al. [2023b], we exam-
ine three fusion methods to combine predictions from mul-
tiple super-resolved images generated by the SR networks.
For each track in the test set, we process 𝑁 consecutive LR
images of the same LP, captured at varying distances from
the camera. Each LR image is independently super-resolved
and fed to the OCR model. The predictions are then fused
using one of the following strategies. In our experiments,
𝑁 ∈ {1, 3, 5}, with images selected sequentially from nearest
to farthest. This process is illustrated in Figure 4.

The first fusion method, Highest Confidence (HC),
straightforwardly selects the single prediction with the high-
est associated confidence score as the final output:

�̂� = 𝑦𝑘 , where 𝑘 = arg max
𝑖∈{1,...,𝑁 }

𝑃𝑖 ,

where 𝑃𝑖 is the confidence score for the 𝑖-th OCR predic-
tion 𝑦𝑖 . This strategy aligns with classical confidence-based
fusion rules (e.g., [Kittler et al., 1998] ), which prioritize
predictions with the highest certainty.

The second method, Majority Vote (MV), is an ensemble
learning technique [Zhou, 2025] that selects the most fre-
quent prediction among all 𝑁 outputs:

�̂� = mode ({𝑦1, 𝑦2, . . . , 𝑦𝑁 }) ,
for mode defined as:

mode(𝑆) = arg max
𝑥∈𝑆

count𝑆 (𝑥),

where count𝑆 (𝑥) is the number of times 𝑥 appears in the mul-
tiset 𝑆. MV has been widely adopted in applications such as
handwriting recognition [Zhao and Liu, 2020].

The third method, Majority Vote by Character Posi-
tion (MVCP), aggregates predictions per character position:

�̂� 𝑗 = mode
(
{𝑦 (1, 𝑗 ) , 𝑦 (2, 𝑗 ) , . . . , 𝑦 (𝑁, 𝑗 ) }

)
,

where 𝑦 (𝑖, 𝑗 ) denotes the 𝑗-th character (for 𝑗 ∈ [1, 7], 𝑗 ∈ N)
of the 𝑖-th OCR prediction. The final output �̂� is formed by
concatenating all �̂� 𝑗 . This hierarchical approach draws in-
spiration from structured prediction frameworks [Ghamrawi
and McCallum, 2005], resolving ambiguities at each charac-
ter position.

A key challenge in majority-vote strategies is resolving
ties between competing predictions. To address this, our ap-
proach prioritizes the prediction with the highest average
character-level confidence score within tied groups. Con-
sider five OCR predictions for a Brazilian LP with associ-
ated confidence scores: two instances of “ABC-1234” (0.95
and 0.91), two instances of “ABD-1234” (0.89 and 0.88),
and “HBG-1284” (0.71). Here, the MV method resolves
the tie between the top two candidates (“ABC-1234” and
“ABD-1234”) by comparing their confidence scores – 0.93
for “ABC-1234” and 0.88 for “ABD-1234” – selecting the for-
mer. For character-level ambiguities (e.g., a conflict between
two “C”s and two “D”s in the third position), the MVCP
strategy defaults to the character in the prediction with the
highest confidence (in this case selecting “C” from “ABC-
1234” with 0.95 confidence). This dual-layered approach en-
sures systematic tie-breaking while emphasizing statistically
robust reconstructions through confidence metrics and char-
acter prevalence.

These fusion strategies are adaptations of well-established
methods in Pattern Recognition. For instance, MV-based fu-
sion has demonstrated effectiveness in enhancing OCR per-
formance for degraded documents [Reul et al., 2018], while
HC is a widely adopted approach in speech recognition sys-
tems [Prabhavalkar et al., 2023].

4.3 Results

In this section, we present the results achieved by the OCR
model in recognizing a single super-resolved LP image from
each of the five SR baseline models. Following this, we ana-
lyze the employed fusion approaches and examine the impact
of different resolutions on the results. Finally, we provide vi-
sual results for qualitative analysis.

In LPR research, model performance is traditionally eval-
uated using the recognition rate, defined as the ratio of cor-
rectly recognized LPs (where all characters are correctly clas-
sified) to the total number of LPs in the test set [Wang et al.,
2022; Chen et al., 2023; Wei et al., 2024]. In addition to this
metric, we incorporate partial matches (cases where at least
5 or 6 characters are recognized correctly). This approach is
particularly valuable when not all LP characters can be accu-
rately reconstructed or recognized, as it helps to narrow the
search space.

Table 2 summarizes the performance of the GP_LPR
model [Liu et al., 2024b] on both low- and high-resolution
LP images, alongside images super-resolved by general-
purpose methods SR3 [Saharia et al., 2023] and Real-
ESRGAN [Wang et al., 2021], as well as LP-specialized net-
works LPSRGAN [Pan et al., 2024], PLNET [Nascimento
et al., 2023, 2024a], and LCDNet [Nascimento et al., 2024b].
In LR samples, most characters are barely distinguishable, re-
sulting in recognition rates as low as 2.2%.

The sharp decline in recognition rates for LR images un-
derscores the challenges of achieving accurate LPR when
working with low-quality inputs. While the GP_LPR model
achieves 85.2% recognition rate on HR images, its per-
formance plunges to just 2.2% on LR images, with only
20.1% of LPs having at least 5 correct characters. The ap-
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Figure 4. Illustration of the fusion process to enhance LPR performance by combining multiple super-resolved LP images. Sequential LR images (original
size 16 × 48 pixels) from each track are independently upsampled to 32 × 96 pixels via a single-image SR model, then processed by the GP_LPR model [Liu
et al., 2024b]. The OCR outputs are aggregated using three fusion strategies: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character
Position (MVCP), leveraging temporal consistency across frames to resolve structural ambiguities in character reconstruction (e.g., distinguishing “R”, “K”
and “H”). This approach is particularly valuable for forensic and surveillance scenarios that demand high reliability.

Table 2. Recognition rates obtained by GP_LPR on different test
images. The first LR and HR images from each track were used for
the experiments on the original images. Super-resolved images were
generated from the first LR image of each track.

Test Images # Correct Characters

All ≥ 6 ≥ 5

HR 85.2% 98.5% 99.8%
LR (no SR) 2.2% 8.2% 20.1%

LR + SR (SR3) 18.4% 45.8% 68.3%
LR + SR (LPSRGAN) 19.6% 46.1% 67.4%
LR + SR (Real-ESRGAN) 20.2% 49.8% 71.8%
LR + SR (PLNET) 29.9% 57.8% 76.9%
LR + SR (LCDNet) 29.9% 59.2% 77.1%

plication of SR methods, however, brings significant im-
provements. Domain-specific models such as LCDNet and
PLNET achieve a 29.9% recognition rate, outperforming
general-purpose SR approaches like SR3 (18.4%) and Real-
ESRGAN (20.2%). For partial recognition (at least five cor-
rect characters), LCDNet reaches 77.1%, demonstrating that
even imperfect reconstructions can effectively reduce the
search space in forensic scenarios. Interestingly, LPSRGAN
– despite being tailored for LPs – underperforms compared
to Real-ESRGAN (19.6% vs. 20.2%), indicating potential
limitations in its degradation modeling or training methodol-
ogy. Overall, these findings highlight the promise of SR tech-
niques in improving LPR robustness under real-world con-
ditions. Nevertheless, the considerable gap between super-
resolved (29.9%) and HR (85.2%) performance reveals the
continued need for advancements in dealing with noise, com-
pression, and other practical image degradations.

Table 3 presents the recognition rates achieved by com-
bining the OCR model’s predictions for three and five super-
resolved images using the strategies described in Section 4.2.
For LP-specialized models, PLNET achieves up to 40.9%
recognition rate (all characters correct) withMVCP and 5 im-
ages, while LCDNet outperforms slightly at 42.3%, highlight-
ing their robustness in reconstructing critical character de-
tails. Bothmodels surpass general-purposemethods like SR3
(28.3%) and Real-ESRGAN (29.5%). The MVCP strategy
consistently delivers the highest gains, improving PLNET’s
accuracy by 5.0% (3 to 5 images) and LCDNet’s by 4.5%

over HC and MV. Aggregating five images instead of three
further boosts performance; for example, LCDNet achieves
86.9% for cases with at least 5 correct characters (vs. 83.3%
with 3 images), nearing practical utility for surveillance sys-
tems. These results underscore the value of temporal fusion
and domain-specific SR in overcoming real-world degrada-
tions, where partial matches (≥ 5 characters) remain critical
for forensic tasks.

Tables 4 and 5 demonstrate the critical impact of image
resolution on LP super-resolution and subsequent LPR per-
formance. For lower-resolution sources (1280 × 960 pixels),
PLNET and LCDNet achieve modest recognition rates of
22.7% and 23.5% (all characters correct, 5 images +MVCP),
respectively. In contrast, for high-resolution sources (1920×
1080 pixels), these models reach 59.3% (PLNET) and 61.4%
(LCDNet) under the same conditions – a 2.6× improvement –
underscoring the importance of pixel density in preserving
structural details like character edges and serifs.

The MVCP fusion strategy consistently outperforms HC
and MV across resolutions. For 1280 × 960 images, MVCP
boosts LCDNet’s accuracy by +5.0% (18.5% → 23.5%)
with 5 images, while for 1920× 1080 images, it improves re-
sults by +7.7% (53.1% → 61.4%). Increasing the number of
fused images from 3 to 5 further enhances performance: par-
tial matches (≥ 5 characters) rise from 78.2% to 95.8% for
LCDNet in HR settings, demonstrating near-practical utility
for surveillance systems.

Notably, even LR scenarios benefit significantly from fu-
sion. For 1280 × 960 images, MVCP with 5 images achieves
71.6% (SR3) to 78.2% (LCDNet) for ≥ 5 correct characters,
narrowing search spaces in forensic applications. This is criti-
cal for real-world deployments, where cost-effective cameras
(e.g., 1280 × 960 sensors) dominate, and partial matches re-
main acceptable due to resolution constraints. The proposed
dataset bridges this gap, enabling robust evaluation of SR
methods across diverse operational scenarios.

While recent LP-specific SR methods (e.g., LPSR-
GAN [Pan et al., 2024] and PLNET [Nascimento et al.,
2023, 2024a]) and general-purpose approaches (e.g., Real-
ESRGAN [Wang et al., 2021] and SR3 [Saharia et al.,
2023]) have advanced super-resolution research, our exper-



Table 3. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images
generated by PLNET and LCDNet. As outlined in Section 4.2, three fusion strategies were evaluated: Highest Confidence (HC), Majority
Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images
(Both Resolutions)

# Images
Majority Vote

HC MV MVCP

All ≥ 6 ≥ 5 All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

SR3 (LR + SR) 3 19.9% 49.5% 70.8% 21.4% 50.9% 71.2% 24.1% 56.3% 76.4%
5 20.2% 50.6% 71.9% 25.1% 55.1% 73.8% 28.3% 61.8% 81.5%

LPSRGAN (LR + SR) 3 24.0% 51.5% 70.7% 24.5% 51.7% 70.9% 25.3% 53.5% 72.9%
5 25.4% 53.1% 71.9% 27.4% 54.3% 73.0% 28.8% 56.3% 76.9%

Real-ESRGAN (LR + SR) 3 23.5% 54.6% 76.0% 24.1% 55.8% 76.2% 25.6% 57.4% 78.3%
5 24.9% 56.6% 77.6% 27.7% 59.4% 78.5% 29.5% 61.7% 81.6%

PLNET (LR + SR) 3 34.5% 63.8% 80.7% 36.1% 64.4% 80.9% 36.6% 66.1% 82.0%
5 35.9% 65.3% 82.9% 39.5% 67.4% 83.6% 40.9% 70.4% 85.8%

LCDNet (LR + SR) 3 34.8% 63.6% 81.9% 36.7% 64.5% 82.0% 37.8% 67.0% 83.3%
5 35.7% 64.8% 83.1% 40.7% 68.1% 84.2% 42.3% 72.0% 86.9%

Table 4. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images
generated by PLNET and LCDNet (considering only LPs extracted from images with 1280 × 960 pixels). As outlined in Section 4.2, three
fusion strategies were evaluated: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images
(1280 × 960)

# Images
Majority Vote

HC MV MVCP

All ≥ 6 ≥ 5 All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

SR3 (LR + SR) 3 9.5% 32.2% 56.8% 9.8% 33.3% 57.2% 11.8% 38.9% 63.9%
5 9.9% 34.0% 58.4% 12.1% 37.1% 60.3% 15.3% 46.4% 71.6%

LPSRGAN (LR + SR) 3 8.7% 30.3% 52.2% 8.9% 30.3% 52.4% 8.7% 31.1% 55.9%
5 9.6% 31.1% 54.0% 10.2% 32.3% 55.6% 11.0% 34.6% 60.9%

Real-ESRGAN (LR + SR) 3 12.3% 37.8% 63.7% 12.6% 39.0% 64.0% 13.7% 39.8% 65.8%
5 14.0% 40.4% 65.6% 15.7% 42.5% 66.8% 17.4% 45.5% 71.1%

PLNET (LR + SR) 3 17.0% 45.5% 69.0% 17.7% 45.7% 69.3% 18.3% 47.3% 70.7%
5 18.3% 47.0% 72.5% 20.7% 49.1% 73.7% 22.7% 53.4% 76.9%

LCDNet (LR + SR) 3 17.4% 44.3% 70.2% 18.5% 45.4% 70.5% 19.3% 48.4% 72.2%
5 18.5% 46.2% 72.4% 21.7% 49.7% 73.9% 23.5% 55.3% 78.2%

Table 5. Comparison of recognition rates achieved by combining the outputs of the GP_LPR model for multiple super-resolved images
generated by PLNET and LCDNet (considering only LPs extracted from images with 1920× 1080 pixels). As outlined in Section 4.2, three
fusion strategies were evaluated: Highest Confidence (HC), Majority Vote (MV), and Majority Vote by Character Position (MVCP).

Test Images
(1920 × 1080)

# Images
Majority Vote

HC MV MVCP

All ≥ 6 ≥ 5 All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

SR3 (LR + SR) 3 30.3% 66.8% 84.8% 33.0% 68.5% 85.3% 36.4% 73.8% 88.9%
5 30.6% 67.3% 85.4% 38.2% 73.1% 87.4% 41.4% 77.2% 91.3%

LPSRGAN (LR + SR) 3 39.4% 72.7% 89.3% 40.2% 73.1% 89.4% 41.9% 76.0% 90.0%
5 41.3% 75.1% 89.9% 44.7% 76.4% 90.5% 46.7% 78.1% 92.7%

Real-ESRGAN (LR + SR) 3 34.8% 71.5% 88.4% 35.7% 72.7% 88.5% 37.5% 75.1% 90.8%
5 35.8% 72.8% 89.6% 39.8% 76.3% 90.3% 41.6% 78.0% 92.1%

PLNET (LR + SR) 3 52.2% 82.4% 92.5% 54.6% 83.3% 92.5% 55.1% 85.2% 93.5%
5 53.7% 83.7% 93.2% 58.4% 85.9% 93.7% 59.3% 87.7% 94.9%

LCDNet (LR + SR) 3 52.3% 83.0% 93.6% 55.1% 83.8% 93.7% 56.4% 85.5% 94.5%
5 53.1% 83.6% 93.8% 59.8% 86.7% 94.5% 61.4% 89.0% 95.8%

iments reveal their limitations in real-world scenarios. LP-
SRGAN, despite its domain-specific design, achieves only
19.6% recognition accuracy on UFPR-SR-Plates (Table 2),
a drastic drop from the 93.9% it attains on synthetic bench-
marks like LicensePlateDataset10K [Pan et al., 2024]. Sim-
ilarly, PLNET, SR3, and LCDNet – which achieve 49.8%,
43.1%, and 39.0% on synthetic RodoSol-ALPR [Nascimento
et al., 2024b] – exhibit significantly lower accuracy on
real-world UFPR-SR-Plates (29.9%, 18.4%, and 29.9%, re-
spectively; Table 2). This disparity underscores the limita-
tions of synthetic degradation pipelines, which fail to repli-
cate real-world noise patterns (e.g., motion blur, sensor

noise, weather effects). LCDNet’s layout-aware architecture
and OCR-guided training partially mitigate these challenges,
achieving 61.4% accuracy with MVCP fusion (Table 3),
but the gap between synthetic and real-world performance
persists. These results emphasize the necessity of domain-
specific architectures and real-world benchmarks like UFPR-
SR-Plates to advance robust LPR systems.

Figures 5 and 6 present comparisons between low-
resolution LP images and their super-resolved counterparts
produced by the super-resolution networks. As expected,
the GP_LPR model performs worse on low-resolution LPs
(i.e., before super-resolution) extracted from 1280 × 960 im-



LR Inputs
LCI0D33 AJX0D39 A3V0336 AZY0133 ATX0Q71 BAJ0H01 AAT8A91 AQT8991 AAT1A91 AAT4H11

SR3
AZW5635 AZK5576 AZV5625 AZW5829 ATX6035 BBT5B95 BBT5B95 BBT5B95 BBT5B95 BBT5B95

LPSRGAN
AZW6339 AZW6375 AZW5879 AZW5835 AZW6875 BDT5B95 BDT5B95 BDT5B95 BBT5B95 BDT5B55

Real-ESRGAN
AZW6639 AZW5635 AZW6575 AZN5835 AZ26635 BDT3B95 BAT5B95 BDT5B95 BDT5B95 BDT5B35

PLNET
AZK6335 AZK6335 AZK6I35 AZW5835 AZX6635 BAT5B95 BRT5B95 BDT5B95 BBT5B95 BBT5H95

LCDNet
AZW5639 AZW5875 AZK5835 AZW5825 AZW5135 BBT5B95 BAT5A95 BDT5B95 BBT5B95 BBT5B95

HR
AZW5835 BBT5B95

Figure 5. Recognition results for LPs cropped from images with a resolution of 1280 × 960 pixels. The top row shows the predictions made by GP_LPR [Liu
et al., 2024b] on the original LR images, while the two subsequent rows present the predictions obtained from super-resolved images generated by
PLNET [Nascimento et al., 2023, 2024a] and LCDNet [Nascimento et al., 2024b]. Below each image, the predicted characters are displayed, with cor-
rect characters highlighted in blue and incorrect characters in red. The ground truth is indicated in green.

LR Inputs
OPI9C47 C0A4A47 OPI6847 OZI6C47 CBI6947 QIM4C14 EAM4E34 7AM6C84 PVM4E14 OJM2Z54

SR3
OBA6647 DBA6647 D4A6647 DEA8047 QBA6647 GAH6C54 GAH4C54 SAH6C54 GAH6C54 QAH6C54

LPSRGAN
DZA6047 DZA6047 DZA6047 OZA8047 DZA6047 OAM6C54 OAM6C54 OAH6C54 QAM4C54 OAM6C54

Real-ESRGAN
DZA6647 DZA6647 DBA6647 DZA6647 OZA6647 QAH6C54 QAH6C54 QAM4C54 OAH4C54 OAH6C54

PLNET
OZA6047 OZA6047 OZA6047 OZA8047 OZA6047 DAM4C54 GAM4C54 SAM4C54 GIM4C54 QAH4C54

LCDNet
QZA6047 OZA6047 OZA6047 QZA8047 OZA6047 QAM4C54 CAM4C54 QAM4C54 QAH4C54 QAH4C54

HR
DZA6047 QAM4C54

Figure 6. Recognition results for LPs cropped from images with a resolution of 1920× 1080 pixels. The top row shows the predictions made by GP_LPR [Liu
et al., 2024b] on the original LR images, while the two subsequent rows present the predictions obtained from super-resolved images generated by
PLNET [Nascimento et al., 2023, 2024a] and LCDNet [Nascimento et al., 2024b]. Below each image, the predicted characters are displayed, with cor-
rect characters highlighted in blue and incorrect characters in red. The ground truth is indicated in green.

ages (Figure 5) compared to 1920 × 1080 images (Figure 6).
This performance gap stems primarily from the reduced pixel
density in the smaller images, which causes characters to
blend into the LP background. This effect is evident in the
super-resolved LPs shown in Figure 5, where a “W” is mis-
takenly reconstructed as a “K” in the Brazilian LP (left),
and a “B” is reconstructed as “R” or “H” in the Mercosur
LP (right). Similar errors are observed in Figure 6, though
less frequently due to the higher pixel density. For example,
a “Q” was reconstructed as an “O,” and an “M” was recon-
structed as a “H,” with PLNET-generated images exhibiting a
more pronounced tendency towards these misclassifications
than LCDNet-generated images.

4.3.1 Runtime Analysis

This section evaluates the inference efficiency and suitabil-
ity of super-resolution models for both real-time and foren-
sic applications. Table 6 presents a quantitative comparison
of inference times and computational performance across the
models. To ensure consistency and reliability, each model
was independently tested over five separate runs.

LPSRGAN emerges as the fastest model, processing
207.5 frames per second (FPS) (4.82 ± 0.45 ms), making
it well-suited for real-time applications such as traffic moni-
toring. However, this speed comes at the expense of perfor-
mance: as shown in Table 3, the GP_LPR model achieves



Table 6. Inference Time and FPS Comparison.

Model Time (ms) Time (ms) FPS
Avg ± Std Min - Max Avg

LPSRGAN 4.82 ± 0.45 4.49 - 7.41 207.5
PLNET 24.88 ± 1.21 23.97 - 31.68 40.2
Real-ESRGAN 34.86 ± 2.66 32.53 - 46.46 28.7
LCDNet 61.88 ± 1.77 60.47 - 73.13 16.1

only a 28.8% recognition rate when applied to images super-
resolved by LPSRGAN, considerably lower than the rates ob-
tained with slower SR models. In contrast, LCDNet leads
to the highest recognition rate (42.3% with MVCP fusion
on 5 images), a 1.4× improvement over LPSRGAN, despite
its slower inference speed (61.88 ms, 16.1 FPS). PLNET
offers a balanced trade-off, combining moderate efficiency
(24.88 ± 1.21 ms, 40.2 FPS) with competitive performance
(40.9% recognition rate using MVCP), while Real-ESRGAN
performs poorly in both inference speed (34.86 ms, 28.7 FPS)
and recognition performance (29.5% recognition rate with
MVCP).

Notably, LCDNet exhibits stable inference times (standard
deviation: 1.77 ms), contrasting with LPSRGAN’s higher
variability (ranging from 4.49 to 7.41 ms). This stability,
coupled with its superior accuracy under the MVCP proto-
col, establishes LCDNet as a strong candidate for forensic
applications, where precision significantly outweighs speed
requirements. These findings highlight a key trade-off: while
latency-sensitive deployments may favor lightweight models
such as LPSRGAN, accuracy-critical scenarios benefit more
from specialized architectures like LCDNet, even at the cost
of increased computational demands.

We also evaluated the SR3 model, which showed consid-
erably higher inference times (12.31 ± 0.018 s). Although
impractical for real-time use, SR3may still be viable in foren-
sic contexts where processing time is less restrictive. Due to
its significantly slower performance – operating in seconds
rather than milliseconds – SR3’s results are omitted from Ta-
ble 6, as they fall outside the real-time operational scope tar-
geted by the other models.

5 Conclusions and Future Directions

In this work, we introducedUFPR-SR-Plates, a publicly avail-
able dataset specifically designed for LP super-resolution.
The dataset comprises 100,000 LP images organized into
10,000 tracks, each containing five sequential LR and five
sequential HR images of the same LP. This dataset is highly
valuable for developing and evaluating super-resolution tech-
niques aimed at improving License Plate Recognition (LPR)
under real-world, low-quality conditions. Although primar-
ily intended for LP super-resolution, UFPR-SR-Plates is also
well-suited for training and evaluating LPR models, as it cur-
rently represents the largest collection of Brazilian and Mer-
cosur LPs available.

We proposed a benchmark using the UFPR-SR-Plates
dataset. We assessed the recognition rates achieved by the
GP_LPR model [Liu et al., 2024b] in conjunction with
five super-resolution approaches: general-purpose models
(SR3 [Saharia et al., 2023] and Real-ESRGAN [Wang

et al., 2021]) and LP-specialized networks (LPSRGAN,
PLNET [Nascimento et al., 2023], and LCDNet [Nasci-
mento et al., 2024b]). By fusing predictions from multiple
super-resolved images via Majority Vote by Character Posi-
tion (MVCP), recognition rates improved from 2.2% (raw
LR images) to 29.9% for single-image outputs and up to
42.3%with five-image fusion using LCDNet. This represents
a 19.2× improvement over raw LR images, with MVCP out-
performing other fusion strategies by 3.88.1%, demonstrat-
ing its robustness in aggregating temporal information. No-
tably, LCDNet consistently surpassed both general-purpose
and LP-specialized alternatives, validating the importance of
architectural designs tailored to character structure and lay-
out preservation.

Our findings offer valuable insights into the benefits of
super-resolving multiple low-resolution versions of the same
LP and combining their OCR predictions. This method is es-
pecially beneficial for surveillance and forensic applications,
where partial matches can greatly reduce the search space
for potential LPs. We believe this approach could be further
strengthened by incorporating additional vehicle attributes,
such as make, model, and color, as suggested by previous re-
search [Oliveira et al., 2021; Lima et al., 2024].

For future work, we aim to enhance LP domain-specific
architectures by incorporating multi-image fusion to en-
able temporal learning. Additionally, we plan to expand the
UFPR-SR-Plates dataset to address its current limitations:
(i) Motorcycle LPs, which were excluded due to their two-
row layout and acquisition challenges – such as the relatively
low traffic of motorcycles at our capture site and frequent
repetitions of the same LPs; (ii) Systematic OCR errors (e.g.,
confusion between “B” and “8”), which we intend to miti-
gate using multi-model ensembling or confidence calibration
techniques; (iii) Regional and nighttime LPs, as the current
dataset is limited to daylight Brazilian/Mercosur LPs – we
aim to align it with recent multi-region Automatic License
Plate Recognition (ALPR) systems [Laroca et al., 2022]; (iv)
Generalization to extreme conditions (e.g., rain, haze) via hy-
brid synthetic-real training.

We remark that these limitations do not undermine UFPR-
SR-Plates’s value as a foundational benchmark for real-world
SR research. On the contrary, these limitations underscore
clear opportunities for advancing robust ALPR systems. By
publicly releasing UFPR-SR-Plates, we aim to drive progress
in super-resolution and recognition of degraded LPs, partic-
ularly in unconstrained scenarios where existing synthetic
benchmarks prove insufficient.
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