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Abstract—Automatic License Plate Recognition (ALPR) faces
a major challenge when dealing with illegible license plates (LPs).
While reconstruction methods such as super-resolution (SR)
have emerged, the core issue of recognizing these low-quality
LPs remains unresolved. To optimize model performance and
computational efficiency, image pre-processing should be applied
selectively to cases that require enhanced legibility. To support
research in this area, we introduce a novel dataset comprising
10,210 images of vehicles with 12,687 annotated LPs for legibility
classification (the LPLC dataset). The images span a wide
range of vehicle types, lighting conditions, and camera/image
quality levels. We adopt a fine-grained annotation strategy that
includes vehicle- and LP-level occlusions, four legibility categories
(perfect, good, poor, and illegible), and character labels for three
categories (excluding illegible LPs). As a benchmark, we propose
a classification task using three image recognition networks to
determine whether an LP image is good enough, requires super-
resolution, or is completely unrecoverable. The overall F1 score,
which remained below 80% for all three baseline models (ViT,
ResNet, and YOLO), together with the analyses of SR and LP
recognition methods, highlights the difficulty of the task and
reinforces the need for further research. The proposed dataset
is publicly available at https://github.com/lmlwojcik/lplc-dataset
.

I. Introduction
Automatic License Plate Recognition (ALPR) plays a vital

role in road surveillance by using automated systems to
detect vehicles and recognize them based on their license
plates (LPs) [1], [2]. In the deep learning era, key research tasks
in this domain include LP detection and LP recognition, often
complemented by additional processes such as vehicle detection
and LP rectification [3], [4].

State-of-the-art ALPR methods achieve over 95% accuracy
in detection tasks and exceed 90% recognition rates under ideal
conditions [5], [6]. However, their performance degrades sig-
nificantly in challenging scenarios that are not well represented
in most mainstream datasets. Such scenarios include low-light
environments, adverse weather conditions (e.g., rain), and low-
resolution or low-quality images caused by poor equipment or
transmission compression artifacts [7], [8].

Furthermore, recent advances in super-resolution (SR) tech-
nology have also opened up new paths to deal with faulty
images [9], [10]. These models were adapted to an LP recon-
struction task and were shown to aid in recovering information
from otherwise illegible images. However, these models are
often costly and not always needed, potentially even ruining

Fig. 1. Examples illustrating the distinction between image quality and LP
legibility. High-quality images may contain illegible LPs (top right), while low-
quality images can still include legible ones (bottom right). A single image may
also feature both legible and illegible LPs (left).

otherwise suitable images for LP recognition (as we have
observed in some of our experiments reported in this work).

In this context, it is important to distinguish between image
quality and character legibility. LP recognition performance
depends not merely on image resolution or overall visual quality,
but primarily on how legible the characters are. Fig. 1 illustrates
this point: a visually high-quality image may contain illegible
LPs due to factors such as camera distance, while a low-quality
image may still feature clearly legible LPs. In some cases, a
single image can include both legible and illegible LPs. We
also observed that Optical Character Recognition (OCR) models
often produce incorrect predictions with high confidence [11],
particularly in cases where most characters are legible but one
or two remain unclear (an issue also depicted in Fig. 1).

With these challenges in mind, we present the License
Plate Legibility Classification (LPLC) dataset1, which contains
over 10k radar images collected from various locations across
the Brazilian state of Paraná and includes more than 12k
annotated LPs. The images exhibit a wide range of capture
conditions, including varying lighting scenarios, vehicle types
(motorcycles, cars, buses, and trucks), and image quality. A key
contribution of this dataset is the assignment of each LP to
one of four legibility levels: perfect, good, poor, or illegible.
These labels provide a qualitative and inherently subjective
assessment of LP legibility. For the first three categories, we also
provide OCR annotations. The dataset includes both Brazilian

1The LPLC dataset is available at https://github.com/lmlwojcik/lplc-dataset
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and Mercosur LPs2 and can be used as a benchmark for various
ALPR-related tasks.

In this work, we also use LPLC for a series of LP legibility
assessment tasks using established image classification models:
ResNet [12], ViT [13] and YOLO-cls [14]. Additionally, we
explore the use of SR by evaluating three state-of-the-art
models [9], [10], [15] on our novel dataset. Building on these
components, we design a recognition pipeline that incorporates
a new decision step to determine whether an input image is
sufficiently legible, requires further processing, or should be
considered unrecoverable.

The remainder of this work is structured as follows. Section II
provides an overview of state-of-the-art approaches in LP recog-
nition, commonly used benchmark datasets, and key challenges.
Section III introduces our proposed dataset, describing the
images, LPs, and annotated attributes. Section IV describes
our experimental setup for image legibility classification using
established image processing models. Section V presents and
discusses the results. Finally, Section VI concludes the paper.

II. Related Work

State-of-the-art advancements in ALPR, as in other machine
learning research domains, are quantitatively assessed using
public benchmark datasets [3], [5]. An example is CLPD [16], a
dataset containing 1,200 images captured with various devices in
mainland China. While it primarily features daylight scenes and
passenger cars, it offers considerable variability in backgrounds,
road types, capture devices, and image quality.

For the Brazilian context, the RodoSol-ALPR dataset [5]
comprises 20,000 images captured at toll plazas, providing
a realistic representation of actual operating conditions. It
includes a wide range of lighting scenarios, vehicle types, and
weather conditions. The authors [5] demonstrated that state-of-
the-art methods perform well on older datasets featuring simpler
scenarios, such as Caltech-Cars [17], but struggle on RodoSol-
ALPR, revealing limitations tied to outdated benchmarks. While
RodoSol-ALPR captures real situations, it is important to note
that these toll plaza environments differ significantly from many
surveillance camera settings, where camera quality and capture
conditions are often much poorer and more variable.

Recent advances in LP recognition have shifted focus from
achieving high performance on simpler datasets to addressing
more specific challenges in the field. For example, Liu et al. [6]
proposed an attention-based decoder for LP recognition, fol-
lowing the growing trend of integrating attention mechanisms.
Their approach combines a CNN encoder for feature extraction
with a contrastive learning strategy designed to differentiate both
the position and class of each character. The use of attention is
motivated by the fixed character positions in LPs of a given
format, enabling more effective layout-aware feature learning.
They reported a 96% recognition rate on RodoSol-ALPR.

Similarly, Rao et al. [18] proposed an end-to-end pipeline
that includes a segmentation step. The method begins with a

2Following prior literature [2], [9], [11], we use the term “Brazilian” to refer
to the LP layout used in Brazil prior to the adoption of the Mercosur layout.

YOLOv5-based LP detector, followed by segmentation using
the proposed AFF-Net model. Next, a skew correction module
is applied to the segmentation map using standard image
processing techniques to extract the LP region. The four corners
of this region are then aligned with those of a canonical LP
format. Finally, LP recognition is performed using a CNN. This
correction step is effective in handling severely skewed LPs
captured from oblique angles, such as those found in the CLPD
dataset, where they reported a recognition rate of 94%.

SR has gained interest in ALPR research due to its potential
to recover otherwise illegible LP images. For example, studies
like [10] adapt image-to-image translation methods, such as
Generative Adversarial Network (GAN), to improve recognition
performance on low-resolution LPs.

In the same direction, Nascimento et al. [9] proposed a novel
focal loss tailored for character reconstruction, trained on a
variant of the RodoSol-ALPR dataset called RodoSol-SR. This
dataset comprises pairs of high-resolution LP images and their
synthetically degraded low-resolution counterparts. These pairs
were generated by the authors to train the model to reverse the
degradation process through reconstruction.

Building on this context, we introduce the LPLC dataset,
detailed in the following section. Each LP is annotated with
a qualitative legibility score using four distinct levels, which,
to the best of our knowledge, is a novel contribution to the
literature. The dataset supports the development and evaluation
of LP legibility classification methods, an important step in
determining whether an image requires further processing
such as super-resolution. It also serves as a more challenging
benchmark for conventional LP detection and recognition tasks.

III. The LPLC Dataset
We introduce the License Plate Legibility Classifica-

tion (LPLC) dataset, a publicly available resource primarily
designed for the task of classifying the legibility of LP images,
that is, whether an LP image is suitable for direct OCR or
requires additional processing. Although its main purpose is
legibility classification, the dataset is also suitable for other
tasks such as LP detection and recognition, due to its fine-
grained annotations that include details on LP text, legibility
levels, and occlusion. All annotations were made manually by a
single person (the first author) and validated through a semi-
automatic process to ensure accuracy. This revision process
involved using an OCR model’s outputs (PARSeq-tiny [19])
and identifying legibility classification errors to flag potentially
inconsistent annotations in both the legibility labels and OCR
transcripts. Fig. 2 presents a few sample images from the dataset.

LPLC is composed of 10,210 images captured by traffic radars
across the Brazilian state of Paraná. All images were processed
and redacted to remove metadata embedded by the cameras.
These images were taken from hundreds of different cameras on
various roads around the covered area. Each image is annotated
with the time of capture (morning, afternoon, evening, or night)
and may contain one or more LPs, totaling 12,687 annotated
LPs. An LP is annotated if a significant part (roughly two-thirds)
of the car is present in the image and if the LP is large enough to



Fig. 2. Samples from the LPLC dataset.

assess legibility. Each LP is annotated with five attributes: (i) the
coordinates of the LP, (ii) occlusion of the LP, (iii) occlusion of
the vehicle, (iv) legibility level, and (v) the LP characters.

The coordinates correspond to the four corners of the LP as it
appears in the image, which may form an irregular quadrilateral,
starting at the top-left coordinate and moving clockwise towards
the bottom-right. The LP-level occlusion is a binary attribute
labeled “occluded,” which is set to true if one or more characters
on the LP are not visible. This often occurs when vehicles are
positioned at the edge of the image but still meet our criteria
for valid annotation, as seen in the bottom left vehicle in Fig. 2.
Occlusion may also result from objects in the scene, such as
other vehicles, tree branches, or lamp posts. This is illustrated
in the bottom right vehicle in Fig. 2. Vehicle-level occlusion
is indicated by a binary attribute labeled “valid.” An LP is
considered valid if it belongs to a vehicle with either most of its
body (approximately 80% visible or the full front or rear view,
including both headlights or taillights) captured in the image.

The annotation of LP characters is directly linked to their
legibility level. All LPs were manually labeled and then cross-
validated using the PARSeq-tiny OCR model [19]. LPs classified
as illegible — the lowest legibility level — are assigned an
empty string, as their text cannot be recovered. For the remaining
classes, the characters were annotated and validated through a
semi-automatic process: the OCR model was used to predict
each LP’s text, and any discrepancies between the manual and
predicted annotations were reviewed and corrected.

The final validation step for potentially incorrect OCR
annotations involved manually verifying whether the annotated
LP text matched the vehicle shown in the image. This was done
by querying a paid API to retrieve vehicle information — such
as make, model, color, and year — based on the annotated LP
characters. If the returned vehicle details did not match the one
in the image, the annotation was reviewed and a new query was
issued. This process was repeated until a correct match was
found or up to four attempts had been made.

The legibility level is annotated based on the visual quality
of the LP text in the image. We define four legibility levels,
numbered from zero to three. Class 0, labeled “illegible,” refers
to LPs where the text is either completely unrecognizable or so
degraded that it could not be validated using our method. Class 1,
“poor,” includes LPs with distorted text in which characters are
not immediately recognizable. Class 2, “good,” refers to LPs
with legible text that may still exhibit some noise or visible
distortion. Finally, Class 3, “perfect,” corresponds to LPs with
clearly visible characters and no noticeable distortion. Examples
of each legibility level are shown in Fig. 3.

Perfect  Good  Poor Illegible

Fig. 3. OCR legibility levels.

Table I shows the distribution of LPs and attributes in the
dataset. As indicated, the dataset is slightly imbalanced with
respect to the legibility class. An OCR annotation is considered
true if the LP’s characters are labeled, even if some characters
are missing due to occlusion. As previously noted, all LPs have
annotated characters, except those categorized as illegible.

Table II presents the distribution of images in the dataset.
While nighttime images constitute a minority of our dataset
(4,665 evening and nighttime images versus 6,386 morning
and afternoon images), this represents a significant contribution
compared to other public datasets, which typically contain
minimal nighttime imagery [20]. Most images contain at least



TABLE I
LP Statistics.

LPs by Legibility Other Attributes

Class Number Class True False

Perfect 5,617 Occluded 12,586 101
Good 3,641 Valid 12,359 328
Poor 1,825 OCR 11,083 1,604
Illegible 1,604 → Total LPs 12,687

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Train

Test

Valid Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Fold 1 A

Fold 1 B

Valid

Train

Test

Fold 2 A

Fold 2 B

Fold 3 A Fold 4 A Fold 5 A

Fold 3 B Fold 4 B Fold 5 B

Fig. 4. Cross-fold Splits Illustration.

one vehicle with a positive label (an LP that is legible, non-
occluded, or associated with a valid vehicle), and 9,454 images
include at least one LP that is legible, valid, and not occluded.

TABLE II
Image Statistics.

Images by Time of Day Images by Attributes

Class Number Has at Least One Number

Morning 3,830 Legible LPs 9,684
Afternoon 2,556 Non Occluded LPs 10,195
Evening 2,585 Valid Vehicles 10,030
Night 1,239 → Total Images 10,200

IV. Experimental Setup
Our experiments focus on the legibility attribute at the

LP level. We crop all 12,687 LPs from the source images
using their annotated corner coordinates. To evaluate legibility
classification, we consider three models: ResNet [21], ViT [13]
and YOLO-cls [14]. The goal is to assess whether an LP
image is suitable for OCR processing, enabling more efficient
downstream LP recognition by filtering out low-quality samples.

We employ a 5-fold cross-validation protocol with 40%, 20%,
and 40% splits for training, validation, and testing, respectively.
Each fold generates two different experiment iterations, where
the training and test partitions are flipped, as illustrated in Fig. 4.
Consequently, each experiment is carried out 10 times, once per
unique fold configuration, and the final results are reported as
the average over these 10 runs.

There are several reasons behind our choice of protocol.
First, the 𝑛-fold cross-validation protocol allows us to use the
entire dataset for testing, providing performance results for every
image. Second, it mitigates bias associated with specific training
and test partitions. Averaging results across all folds ensures that

the evaluation is not influenced by a particularly easy or difficult
split. Lastly, alternating the roles of training and test partitions
between rounds allows for more accurate comparisons across
folds. The fold splits are made available alongside the dataset.

We train each model under three scenarios, all framed as
straightforward image classification tasks using the cropped
LPs. The first scenario, called “Baseline,” involves predicting
one of the four standard legibility classes: perfect, good, poor,
or illegible. This setup aims to evaluate how effectively current
models can assess the legibility of a given LP image.

In the second scenario, termed “Legibility Recognition”, we
merge the perfect and good LPs into a single class “legible” and
train the network to perform a binary classification between
legible and poor LPs. Illegible LPs are excluded from this
experiment. The objective is to determine whether an image
is suitable for OCR or requires further processing — hence
the binary output. The third scenario, “Full Recognition”,
builds on the second by reintroducing illegible LPs as a third
class, framing the task as ternary classification. In addition to
identifying images that may or may not require enhancement
for OCR, this scenario also aims to detect unrecoverable images
that should be discarded.

We also assess the impact of SR on LP recognition perfor-
mance. For SR, we adopt the pipelines proposed in [9], where
images are first reconstructed using their SR model and then
processed with a version of the GP LPR OCR model [22]
trained on the RodoSol-ALPR dataset [5]. Both SR and OCR are
applied to all images, and the OCR results from the reconstructed
images are compared against those from the originals. In this
experiment, in addition to the LCOFL-GAN proposed in [9],
we also evaluate Real-ESRGAN [15] and LPSRGAN [10],
providing a broader overview of current SR state of the art.

Finally, we report OCR results by legibility class. In addition
to GP LPR, we also evaluate the PARSeq-tiny model [19],
trained on an unpublished dataset. We report both character-
level and LP-level recognition rate, presenting the results broken
down by legibility class.

A. Fine-Tuning Parameters
As mentioned before, we train ResNet, YOLO-cls, and ViT

in these scenarios. Specifically, we employ ResNet-50 and ViT
Base-16 from PyTorch’s torchvision library, and YOLO11m-cls
from the ultralytics implementation. These models were selected
based on their proven effectiveness and widespread adoption in
state-of-the-art research across diverse domains [23]–[25]. We
initialize all models with the weights pre-trained on ImageNet,
and swap the last layer for a simple linear layer with 𝑁 outputs,
where 𝑁 is the number of classes in a given training scenario (4,
2, and 3 classes for scenarios 1, 2, and 3, respectively).

All experiments are conducted on an NVIDIA GeForce 3090
RTX GPU. Each model is trained across ten folds for a maximum
of 200 epochs with a batch size of 16. We employ an early
stopping strategy based on the validation set accuracy, with a
patience of 20 epochs. For ViT and ResNet, we use the Adam
optimizer at a learning rate of 10−5. YOLO-cls is trained with
an SGD optimizer, a starting learning rate of 10−2, multiplied



by 10−2 following the cosine weight decay. For all models, we
fine-tune every layer instead of only the final classifier layer.

V. Results
Table III presents our results on the Baseline scenario,

which consists of predicting the legibility label for a given
LP image. We report the average test micro-F1 score across
the 10 folds for each class, along with the overall F1 score.
Despite the task’s straightforward nature and limited number
of classes, the results reveal it to be quite challenging. Among
the models evaluated, YOLO-cls achieves the best performance.
Fig. 5 shows the confusion matrix of YOLO-cls for one of the
folds, revealing substantial overlap between adjacent classes and
blurred decision boundaries — a pattern that corresponds to the
ambiguous cases where the model made the most errors.

TABLE III
Results on the Baseline scenario (F1-score).

Model
Class

Overall
Perfect Good Poor Illegible

ResNet-50 84.54% 67.98% 56.70% 72.97% 74.51%
ViT b-16 85.74% 68.00% 58.80% 73.67% 75.48%
YOLO11m-cls 88.37% 65.83% 59.42% 74.47% 76.79%

Perfect Good Poor Illegible
Prediction

Perfect

Good

Poor

Illegible

Gr
ou

nd
 Tr

ut
h

1793 266 2 0

211 779 122 17

2 85 381 150

0 21 100 521

Fig. 5. Confusion matrix for one run of YOLO-cls.

Table IV presents the classification results for the Legibility
Recognition and Full Recognition scenarios. The first scenario
evaluates whether an LP image is suitable for OCR, while the
second introduces a third class to identify LPs with unrecover-
able text. We report the test micro-F1 score averaged across the
10 folds. Due to the reduced number of classes, this becomes a
simpler task in which the model distinguishes between legible
and non-legible (or unrecoverable) images. As expected, the
classification metrics are correspondingly higher. Nevertheless,
there remains considerable room for improvement, as the models
consistently struggle to differentiate between high- and low-
quality textures across all scenarios.

Table V presents the performance of the pre-trained SR
models when integrated with LP recognition. All cropped
LPs from the LPLC dataset were first enhanced using the
respective SR model (LCOFL-GAN [9], RealESRGAN [15],
and LPSRGAN [10]) and then processed with the GP LPR
OCR model [22], trained on the RodoSol-ALPR dataset [5]

TABLE IV
Results on the Legibility scenario (F1-score).

Model Legibility Recognition Full Recognition
(Legible vs. Poor) (Legible, Poor, Illegible)

ResNet-50 92.56% 87.23%
ViT b-16 93.16% 87.78%
YOLO11m-cls 92.71% 86.25%

(as in [9]). This setup evaluates whether SR improves LP
recognition accuracy. The results suggest otherwise: in the best
case (Real-ESRGAN), recognition improved for only 647 out of
the 11,027 LPs (≤ 6%). These findings indicate that current SR
networks struggle to generalize across datasets.

TABLE V
SR network evaluation (character accuracy).

GAN Model OCR Results
With SR

Class
Total

Perfect Good Poor

LCOFL-GAN [9]
Better 98 108 108 314
Equal 494 308 170 972
Worse 5,012 3,206 1,523 9,741

Real-ESRGAN [15]
Better 211 276 160 647
Equal 5,180 2,683 572 8,435
Worse 213 663 1,069 1,945

LPSRGAN [10]
Better 108 98 45 251
Equal 264 209 115 588
Worse 5,232 3,315 1,641 10,188

This demonstrates that applying super-resolution does not
necessarily enhance LP recognition performance and can, in
many cases, be detrimental. Fig. 6 shows six reconstructed
images (using LCOFL-GAN) alongside their original versions,
organized by legibility level. As can be seen, the employed SR
model not only reduces legibility but also introduces halluci-
nated characters that were not present in the original images.

Original

Original

Reconstructed

Reconstructed

Perfect LPs Good LPs Poor LPs

Fig. 6. Original and reconstructed images using super-resolution.

Finally, Table VI presents the character-wise accuracy (Char
Acc) and whole-LP accuracy (LP Acc) for our dataset, broken
down by legibility class. As described in Section IV, we use
GP LPR [22] and PARSeq-tiny [19], the latter of which was
trained on a different, unpublished dataset. The results clearly
indicate that OCR performance is strongly correlated with the
legibility of the LP: lower legibility levels lead to significantly
reduced recognition accuracy.



TABLE VI
OCR evaluation on the LPLC dataset.

Class
GP LPR [22] PARSeq-tiny [19]

Char Acc LP Acc Char Acc LP Acc

Perfect 90.57% 80.74% 99.52% 98.07%
Good 85.02% 62.37% 98.40% 92.32%
Poor 74.91% 30.30% 93.78% 72.34%

Overall 86.30% 66.84% 98.08% 91.37%

VI. Conclusions
In this work, we introduced a novel ALPR-related dataset

consisting of 10,200 images captured by street radars, encom-
passing a diverse range of vehicles and LPs. The dataset includes
fine-grained annotations such as legibility level, LP text, and
both vehicle- and LP-level occlusion. We adapted three image
classification models for the task of legibility classification and
evaluated them in a 5-fold cross-validation setup, reporting
average results across ten runs.

Our findings indicate that although the evaluated classifica-
tion networks achieve promising results, they are not yet reliable
for deployment in real-world applications, particularly due to
their difficulty in distinguishing subtle legibility differences.
Furthermore, the super-resolution model evaluated in this study
exhibits poor generalization in cross-dataset settings, frequently
degrading LP legibility or introducing hallucinated characters,
ultimately harming LP recognition performance.

As future work, we suggest the development of SR models
tailored for cross-domain scenarios, as well as the exploration of
alternative image enhancement techniques aimed at improving
LP legibility without compromising the integrity of the visual
content. In addition, we plan to position this dataset within
the state of the art by conducting a more comprehensive
comparative evaluation against current ALPR methods, thereby
demonstrating its broad applicability.
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