SEGRMES O SVR D SIEGRAPI D 2025

Improving Fine-Grained Vehicle Classification via Multitask Learning and Hierarchical Consistency

Gabriel E. Lima*, Eduardo Santos^{†,*}, Eduil Nascimento Jr.[†], Rayson Laroca^{‡,*}, and David Menotti* *{gelima,menotti}@inf.ufpr.br †{ed.santos,eduiljunior}@pm.pr.gov.br †rayson@ppgia.pucpr.br

INTRODUCTION

Problem: Fine-grained vehicle classification often relies on compound labels, ignoring the hierarchical relationships between attributes. While multitask learning is a known alternative, its true benefits remain poorly understood, as prior studies are often restricted to limited experimental setups.

Objectives:

- To compare single-task vs. multitask learning across standard deep learning models.
- To assess a hierarchical regularization technique for enforcing semantic consistency.
- To establish a clear baseline to guide future research.

BACKGROUND

$$\mathcal{L}_{\text{MTL}}^{(k)} = \sum_{t \in \mathcal{T}} w_t^{(k)} \mathcal{L}_t^{(k)}$$

 $\mathcal{L}_{ ext{GradNorm}}^{(k)} = \sum \left| G_t^{(k)} - \hat{G}_t^{(k)} \right|$

$$\mathcal{L}_{\mathrm{KL}}^{(t_{d+1}|t_d)} = D_{\mathrm{KL}} \left(\mathbf{q}_x^{(t_{d+1}|t_d)} \parallel \mathbf{p}_x^{(t_{d+1})} \right)$$

Weighted sum of individual task losses.

Dynamically adjusts the weights using GradNorm.

KL Divergence penalty to prevent predictions that violate data's hierarchy.

DATASET

Source: Surveillance system.

Data: 24,945 images (16,308) unique vehicles).

Annotations: 26 makes, 136

models, and 14 vehicle types.

RESULTS

Classification Performance

Comparison of deep learning models for single-task, multitask, and multitask with hierarchical regularization | Vehicle model classification setups. Hierarchical Consistency Error (HC-Err) is also reported, with (e3) achieving the largest reduction. Results are averaged over 10 runs, with standard deviation in parentheses. The best outcomes are shown in bold.

(e1) single-task learning — separate models are trained independently for each attribute.

Classification Model	Make			Model				HC-Err↓		
	Mi-acc ↑	Ma-acc ↑	F1 ↑	Mi-acc ↑	Ma-acc ↑	F1 ↑	Mi-acc ↑	Ma-acc ↑	F1 ↑	¥
EfficientNet-V2 Small [31]	94.43 (0.57)	84.99 (1.63)	86.36 (1.44)	90.91 (0.63)	86.16 (1.08)	87.25 (0.76)	96.12 (0.66)	88.97 (1.97)	90.23 (1.58)	32.87 (1.74)
MobileNet-V3 Small [32]	91.27 (0.74)	77.99 (1.68)	80.19 (1.44)	86.52 (0.75)	79.16 (1.18)	80.90 (1.14)	95.15 (0.68)	85.61 (1.93)	87.41 (1.64)	36.84 (1.99)
ResNet-50 [33]	93.62 (0.51)	83.53 (1.73)	84.96 (1.08)	89.89 (0.87)	84.58 (1.21)	85.73 (0.79)	95.45 (0.61)	86.75 (2.34)	88.39 (1.90)	33.74 (1.80)
ResNet-101 [33]	93.80 (0.72)	83.49 (1.53)	85.01 (1.16)	90.20 (0.59)	84.87 (0.78)	86.09 (0.56)	94.69 (1.54)	84.64 (4.47)	85.92 (4.51)	32.09 (1.25)
ViT-B16 [34]	31.67 (1.68)	09.09 (3.43)	07.89 (3.04)	29.40 (1.71)	14.29 (3.58)	15.44 (3.51)	71.59 (1.52)	32.52(5.17)	34.70 (5.09)	63.07 (2.33)
YOLOv11-nano-cls [35]	91.85 (0.99)	80.33 (2.81)	82.22 (2.17)	86.23 (1.38)	79.60 (1.94)	80.41 (1.73)	94.31 (0.80)	85.51 (2.54)	86.50 (2.16)	40.15 (3.99)
			0100 (1)	07 70 (0 00)	91 99 (1 90)	99 47 (1 29)			00 10 (1 95)	
YOLOv11-small-cls [35] (e2) Multitask learning — a	93.07 (0.62) single model jointly	y predicts all attrib	84.36 (1.55) outes.	87.53 (0.99)	81.33 (1.80)	82.47 (1.38)	95.20 (0.53)	87.00 (1.85)	88.18 (1.35)	38.38 (2.51)
YOLOv11-small-cls [35] (e2) Multitask learning — a				87.53 (0.99)	Model	02.47 (1.30)	95.20 (0.55)	Type	00.10 (1.33)	HC-Err \
YOLOv11-small-cls [35]		y predicts all attrib		Mi-acc ↑		F1 ↑	Mi-acc ↑		F1 ↑	
YOLOv11-small-cls [35] (e2) Multitask learning — a second control of the control	single model jointly	y predicts all attrib Make	outes.		Model			Type		
YOLOv11-small-cls [35] (e2) Multitask learning — a : Classification Model EfficientNet-V2 Small [31]	Mi-acc ↑ 95.85 (0.54)	y predicts all attrib Make Ma-acc ↑ 87.61 (1.16)	F1 ↑ 89.30 (1.20)	Mi-acc ↑ 91.35 (0.82)	Model Ma-acc ↑	F1 ↑ 87.83 (1.32)	Mi-acc ↑ 97.01 (0.55)	Type Ma-acc ↑ 89.87 (2.06)	F1 ↑ 91.45 (1.80)	HC-Err ↓ 14.97 (1.73)
YOLOv11-small-cls [35] (e2) Multitask learning — a second control of the control	Mi-acc ↑ 95.85 (0.54) 92.50 (0.64)	Make Ma-acc ↑ 87.61 (1.16) 81.03 (1.83)	F1 ↑ 89.30 (1.20) 83.00 (1.53)	Mi-acc ↑ 91.35 (0.82) 87.16 (0.83)	Model Ma-acc ↑ 86.89 (1.50) 80.10 (1.29)	F1 ↑ 87.83 (1.32) 81.71 (1.04)	Mi-acc ↑ 97.01 (0.55) 95.69 (0.68)	Type Ma-acc ↑ 89.87 (2.06) 86.61 (1.90)	F1 ↑ 91.45 (1.80) 88.57 (1.69)	HC-Err ↓ 14.97 (1.73) 17.44 (1.68)
YOLOv11-small-cls [35] (e2) Multitask learning — a second control of the control	Mi-acc ↑ 95.85 (0.54) 92.50 (0.64) 95.14 (0.55)	y predicts all attrib Make Ma-acc ↑ 87.61 (1.16)	F1 ↑ 89.30 (1.20)	Mi-acc ↑ 91.35 (0.82) 87.16 (0.83) 90.40 (0.73)	Model Ma-acc ↑ 86.89 (1.50)	F1 ↑ 87.83 (1.32)	Mi-acc ↑ 97.01 (0.55)	Type Ma-acc ↑ 89.87 (2.06)	F1 ↑ 91.45 (1.80)	HC-Err ↓ 14.97 (1.73) 17.44 (1.68) 16.75 (2.17)
YOLOv11-small-cls [35] (e2) Multitask learning — a : Classification Model	Mi-acc ↑ 95.85 (0.54) 92.50 (0.64)	Make Ma-acc ↑ 87.61 (1.16) 81.03 (1.83) 86.49 (1.21)	F1 ↑ 89.30 (1.20) 83.00 (1.53) 87.82 (1.35)	Mi-acc ↑ 91.35 (0.82) 87.16 (0.83)	Model Ma-acc ↑ 86.89 (1.50) 80.10 (1.29) 84.72 (1.05)	F1 ↑ 87.83 (1.32) 81.71 (1.04) 86.26 (0.71)	Mi-acc ↑ 97.01 (0.55) 95.69 (0.68) 96.62 (0.57)	Type Ma-acc ↑ 89.87 (2.06) 86.61 (1.90) 88.61 (2.60)	F1 ↑ 91.45 (1.80) 88.57 (1.69) 90.46 (2.28)	HC-Err ↓ 14.97 (1.73) 17.44 (1.68)

Classification Model	Make			Model			Type			HC-Err↓
	Mi-acc ↑	Ma-acc ↑	F1 ↑	Mi-acc ↑	Ma-acc ↑	F1 ↑	Mi-acc ↑	Ma-acc ↑	F1 ↑	Z v
EfficientNet-V2 Small [31]	95.87 (0.55)	86.70 (2.18)	88.47 (1.70)	89.96 (1.36)	82.50 (1.36)	84.84 (1.29)	96.19 (0.69)	84.62 (2.71)	86.95 (2.17)	4.10 (0.89)
MobileNet-V3 Small [32]	91.61 (0.84)	76.62 (2.87)	80.13 (2.33)	83.34 (0.71)	70.80 (1.32)	75.60 (1.15)	94.26 (0.72)	82.65 (1.68)	84.96 (1.18)	5.54(0.68)
ResNet-50 [33]	95.16 (0.64)	84.92 (1.87)	87.30 (1.61)	88.82 (0.70)	79.67 (1.26)	83.60 (0.93)	96.04 (0.67)	85.21 (2.41)	87.73 (2.12)	4.30 (0.86)
ResNet-101 [33]	95.29 (0.70)	84.99 (1.77)	87.64 (1.48)	89.09 (0.80)	80.30 (1.27)	83.85 (0.94)	96.22 (0.68)	85.90 (3.38)	88.36 (2.84)	4.41 (0.87)
YOLOv11-nano-cls [35]	93.31 (0.72)	80.38 (2.22)	83.19 (1.92)	85.64 (0.86)	74.42 (1.40)	77.99 (1.21)	94.70 (0.75)	79.42 (2.10)	81.36 (2.00)	6.43 (0.88)
YOLOv11-small-cls [35]	94.52 (0.57)	83.76 (1.95)	86.16 (1.57)	87.95 (0.89)	78.92 (1.43)	81.84 (1.03)	95.35 (0.71)	79.93 (2.68)	81.72 (2.33)	5.71(1.00)

Confidence Distribution

confidence across setups, using EfficientNet-V2 Small.

(c) Multitask + hierarchical regularization setup.

CONCLUSION

Key takeaways: Multitask learning generally improved classification performance. Hierarchical regularization offered a different benefit: it enhanced the model's consistency, even if it didn't always increase accuracy.

Next steps: Expand to finer-grained attributes (e.g. subtypes, sub-models), and find the optimal attribute combination for classification.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES), through the Programa de Excelência Acadêmica (PROEX) — Finance Code 001, and in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (# 315409/2023-1)