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Introdução

Problema: Redes neurais e dados ruidosos [3].

Abordagem: Pŕe-processamento e autoencoders [10, 11].

Questionamento: Desenvolvimento conjunto dos modelos?

Escopo: Classificação de d́ıgitos manuscritos.

Contribuição: Exploração (teórica e prática) de ideias.
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Objetivos

Objetivo geral: explorar o incremento na taxa de acertos de um
classificador de imagens por meio do uso e da adaptação de uma rede
autoencoder para remoção de rúıdo.
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Trabalhos Correlatos

Classificação de imagens de d́ıgitos manuscritos [1, 2, 5].

Classificação de imagens na presença de dados ruidosos [6–9, 13].

Treino de redes neurais em conjunto para solucionar problemas
relacionados [4, 12].
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Materiais e Métodos

Metodologia:

Pesquisa experimental;

Experimentos I, II, III e IV.

Materiais:

Redes neurais Multilayer Perceptron MLP;

Conjunto de dados Modified National Institute of Standards and
Technology (MNIST) [2];

Rúıdo Gaussiano Estacionário Aditivo;

Métrica: Acurácia.
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Experimento I: Classificação de imagens

Figura: Exemplos de imagens pertencentes ao conjunto de dados MNIST e suas
respectivas legendas.
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Experimento I: Classificação de imagens

Figura: Arquitetura do modelo de classificação desenvolvido.
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Experimento I: Classificação de imagens

Tabela: Acurácia (treino e validação) de classificação em relação às épocas 1, 5 e
10.

Época Acurácia média Treino (%) Acurácia média Validação (%)

1 85,63 91,57
5 93,56 92,97
10 94,57 93,61
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Experimento II: Rúıdo

Figura: Imagem (d́ıgito 6) do conjunto de validação para diferentes ńıveis de
rúıdo.
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Experimento II: Rúıdo

Tabela: Acurácia média de classificação em relação a diferentes ńıveis de rúıdo.

Variação do ńıvel de rúıdo (std) Acurácia média de classificação (%)

0,1 88,18
0,2 81,66
0,4 61,38
0,6 44,58
0,8 33,72
1,0 27,02
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Experimento III: Pré-processamento

Figura: Arquitetura autoencoder MLP implementada pelos modelos de remoção
de rúıdo.
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Experimento III: Pré-processamento

Figura: Sáıda dos removedores de rúıdo (10 épocas) para entrada ruidosa
referente ao d́ıgito 6.
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Experimento III: Pré-processamento

Tabela: Acurácia média de classificação em relação a imagens ruidosas
pré-processadas pelos respectivos modelos de remoção de rúıdo treinados em 1 e
10 épocas.

Variação ńıvel
de rúıdo (std)

Acurácia média de classificação
(%) Removedor de rúıdo 1 época

Acurácia média de classificação
(%) Removedor de rúıdo 10 épocas

0,1 76,92 86,73
0,2 73,71 84,76
0,4 61,69 77,47
0,6 55,89 63,71
0,8 52,85 54,58
1,0 39,70 50,85
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Experimento IV: Adaptação

Termo de erro (última camada):

eNi = (−yi + ŷi ).logsig
′(vi ) (1)

Termo de erro adaptado (última camada):

êN i = (φ(−yi + ŷi )+ωE c [k]).logsig ′(vi ) (2)

Configurações φ e ω exploradas:

C =


(+1,0;−1,0),(+0,8;−0,2),(+0,5;−0,5),
(+1,0;−0,5),(+1,0;+1,0),(+0,5;0,5),

(+1,0;+0,5),(+0,8;+0,2)

 (3)
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Experimento IV: Adaptação

Tabela: Acurácia média de classificação de imagens (com diferentes ńıveis de
rúıdo) pré-processadas pelos respectivos modelos de remoção de rúıdo treinados
com as configurações (φ ,ω).

Configuração (φ ,ω)
Acurácia média de classificação (%)

0,1 0,2 0,4 0,6 0,8 1,0

(φ =+1,0,ω =−1,0) 75,80 73,96 68,29 66,31 52,64 41,46
(φ =+0,8,ω =−0,2) 80,38 79,62 65,84 61,36 52,40 42,91
(φ =+0,5,ω =−0,5) 70,05 74,12 69,86 68,78 54,77 42,14
(φ =+1,0,ω =−0,5) 82,66 80,82 75,75 67,75 60,69 48,26
(φ =+1,0,ω =+1,0) 66,17 63,33 26,90 15,07 28,58 15,91
(φ =+0,5,ω =+0,5) 57,30 60,60 42,93 9,74 24,91 9,74
(φ =+1,0,ω =+0,5) 69,82 70,55 51,29 33,60 29,64 28,24
(φ =+0,8,ω =+0,2) 72,49 72,57 54,69 46,16 39,24 34,13
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Conclusão

Conclusões:

Rúıdo: redução da taxa de acertos;

Pré-processamento: aumento de classificações corretas;

Adaptação proposta: melhoria na taxa de acertos (em menos épocas).

Trabalhos futuros: expandir, reproduzir e formalizar.
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