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Introducao

Problema: Redes neurais e dados ruidosos [3].
Abordagem: Pfe-processamento e autoencoders [10, 11].
Questionamento: Desenvolvimento conjunto dos modelos?
Escopo: Classificacdo de digitos manuscritos.

Contribui¢do: Exploragdo (tedrica e pratica) de ideias.
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Objetivo geral: explorar o incremento na taxa de acertos de um
classificador de imagens por meio do uso e da adaptagcdo de uma rede
autoencoder para remog¢ao de ruido.
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Trabalhos Correlatos

Classificacdo de imagens de digitos manuscritos [1, 2, 5].
Classificagdo de imagens na presenga de dados ruidosos [6-9, 13].

Treino de redes neurais em conjunto para solucionar problemas
relacionados [4, 12].

5/20



Materiais e Métodos

Metodologia:
o Pesquisa experimental;

o Experimentos I, 11, Il e IV.

Materiais:
o Redes neurais Multilayer Perceptron MLP;

o Conjunto de dados Modified National Institute of Standards and
Technology (MNIST) [2];

@ Ruido Gaussiano Estacionario Aditivo;

o Métrica: Acuracia.
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Experimento |: Classificacao de imagens

Figura: Exemplos de imagens pertencentes ao conjunto de dados MNIST e suas
respectivas legendas.
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Experimento |: Classificacao de imagens

Figura: Arquitetura do modelo de classificagdo desenvolvido.




Experimento |: Classificacao de imagens

Tabela: Acurécia (treino e validagdo) de classificagdo em relagdo as épocas 1, 5 e

10.

Epoca

Acuricia média Treino (%)

Acuracia média Validagio (%)

1
5
10

85,63
93,56
94,57

91,57
92,97
93,61
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Experimento |I: Ruido

Figura: Imagem (digito 6) do conjunto de validaco para diferentes niveis de
ruido.

Original std: 0,1 std: 0,2
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Experimento |I: Ruido

Tabela: Acuracia média de classificacdo em relacdo a diferentes niveis de ruido.

Variagcdo do nivel de ruido (std) Acuracia média de classificagdo (%)

0,1 88,18
0,2 81,66
0,4 61,38
0,6 44,58
0,8 33,72
1,0 27,02
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Experimento |ll: Pré-processamento

Figura: Arquitetura autoencoder MLP implementada pelos modelos de remocao
de ruido.
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Experimento |ll: Pré-processamento

Figura: Saida dos removedores de ruido (10 épocas) para entrada ruidosa
referente ao digito 6.
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Experimento lll: Pré-processam

Tabela: Acurdcia média de classificagdo em relagdo a imagens ruidosas
pré-processadas pelos respectivos modelos de remoc3o de ruido treinados em 1 e
10 épocas.

Variacdo nivel Acuracia média de classificacdo Acuracia média de classificacdo

de ruido (std) (%) Removedor de ruido 1 época (%) Removedor de ruido 10 épocas
0,1 76,92 86,73
0,2 73,71 84,76
0,4 61,69 77,47
0.6 55,89 63,71
0,8 52,85 54,58
1,0 39,70 50,85
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Experimento IV: Adaptacao

Termo de erro (iltima camada):
eN; = (—y; + 9i).logsig’(v;) (1)
Termo de erro adaptado (dltima camada):
eN;i = (9(—yi+9;) + 0E[K]).logsig'(v;) (2)

Configuracdes ¢ e m exploradas:

(+1,0;—1,0),(+0,8;-0,2),(+0,5; —0,5),
C=<¢ (+1,0,-0,5),(+1,0;+1,0),(+0,5;0,5),
(+1,0;+0,5),(+0,8;+0,2)

(3)
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Experimento IV: Adaptacao

Tabela: Acurdcia média de classificacdo de imagens (com diferentes niveis de
ruido) pré-processadas pelos respectivos modelos de remoc3o de ruido treinados
com as configuragdes (¢, ®).

Acurécia média de classificacdo (%)
0,1 0,2 0,4 0,6 0,8 1,0

(¢ =+1,0,0=-1,0) 7580 7396 6829 6631 52,64 41,46
(¢ =+40,8,0=-0,2) 80,38 79,62 6584 61,36 52,40 42091
(¢ =+40,5,0 =—0,5) 70,05 74,12 69,86 68,78 54,77 42,14
(¢ =+1,0,0 =-0,5) 82,66 80,82 7575 67,75 60,69 48,26
(¢ =+1,0,0 =+1,0) 66,17 63,33 26,90 15,07 28,58 15,91
(¢ =+0,5,0 =+40,5) 57,30 60,60 42,93 9,74 2491 9,74

(¢ =+1,0,0 =+0,5) 69,82 7055 5129 33,60 29,64 28,24
(¢ =+0,8,0 =+0,2) 72,49 7257 54,69 46,16 39,24 34,13

Configuragéo (¢,®)
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Conclusao

Conclusoes:
@ Ruido: reducdo da taxa de acertos;
@ Pré-processamento: aumento de classificacdes corretas;

o Adaptagdo proposta: melhoria na taxa de acertos (em menos épocas).

Trabalhos futuros: expandir, reproduzir e formalizar.
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