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Introduction

Scope: vehicle identification.

Approach: integrating Automatic License Plate Recognition (ALPR) with
Fine-Grained Vehicle Classification (FGVC).

Work in progress: enhance vehicle type classification through superclass
methods and selective prediction.
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Data preparation

Original data: RodoSol-ALPR dataset.

Figure: Samples from the RodoSol-ALPR dataset.

Data preparation: I) preprocessing; II) image selection; and III)
annotations.
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Data preparation

Vehicle-Type: 17,393 images categorized into eleven classes.
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Figure: Distribution of vehicle types in the Vehicle-Type dataset.
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Data preparation

Vehicle-Type: 17,393 images categorized into eleven classes.
Car Car Truck Tractor-trailer

SUV Pickup Subcompact SUV Motorcycle

Scooter Tricycle Bus Minibus

Figure: Examples from the Vehicle-Type dataset, obtained after applying the data
preparation process on the RodoSol-ALPR dataset.
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Experiments and Results

Baseline experiment: evaluate four deep learning models for vehicle type
classification.

Methodology:

Models;

Split;

Data augmentation;

Training protocols;

Evaluation metrics.

Additional experiments: (online) superclass; selective prediction.
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Experiments and partial results

Baseline experiment

Table: Global metrics on Vehicle-Type dataset (averaged over five runs). Protocol
(p2) incorporates oversampling of minority classes, whereas (p1) does not.

Protocol Model Top-1 Top-2 Precision Recall F1

(p1)

ViT b16 65.9% 88.1% 75.3% 65.9% 69.1%
ResNet 34 58.2% 80.4% 76.6% 58.2% 64.0%
EfficientNetV2 50.6% 77.2% 69.2% 50.6% 56.1%
MobileNetV3 61.7% 78.8% 73.5% 61.7% 65.5%

(p2)

ViT b16 78.2% 92.0% 65.9% 78.2% 70.2%
ResNet 34 74.7% 89.4% 53.1% 74.7% 58.0%
EfficientNetV2 73.7% 87.7% 50.1% 73.7% 55.8%
MobileNetV3 70.3% 86.6% 51.5% 70.3% 57.1%
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Experiments and partial results

Superclass and online superclass

Table: Mapping of original classes to
superclasses.

Original Class Superclass Images

Motorcycle
Motorcycle 7,942Scooter

Tricycle

Car Car 6,245

Pick-up
SUV 2,743SUV

Subcompact SUV

Tractor-trailer
Truck 311

Truck

Bus
Bus 152

Minibus

Table: Global accuracies using superclass and
online superclass (averaged over five runs).

Method Top-1 Top-2

Baseline 78.2% 92.0%
Superclass 87.8% 98.1%
Online Superclass 88.0% 96.7%
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Experiments and partial results

Selective prediction

Table: Global accuracies and rejection rates using Softmax Response Rejection method
(averaged over five runs).

Minimum
Confidence

Rejected
Images

Correct Predictions
Incorrectly Rejected

Top-1 Top-2

0.1 0 / 0.0% 0 / 0.0% 78.2% 92.0%
0.2 0 / 0.0% 0 / 0.0% 78.2% 92.0%
0.3 7 / 0.4% 2 / 0.1% 78.5% 92.4%
0.4 71 / 4.1% 28 / 1.6% 80.5% 94.0%
0.5 192 / 11.0% 92 / 5.3% 83.4% 95.0%
0.6 348 / 20.0% 192 / 11.0% 86.9% 95.6%
0.7 503 / 28.9% 308 / 17.7% 86.1% 92.3%
0.8 692 / 39.8% 472 / 27.4% 86.9% 92.9%
0.9 968 / 55.7% 730 / 42.0% 85.5% 90.3%

10 / 14



Experiments and partial results

Selective prediction and online superclass

Table: Global accuracies and rejection rates using Softmax Response Rejection and online
superclass (averaged over five runs).

Minimum
confidence

Rejected
Images

Correct Predictions
Incorrectly Rejected

Top-1 Top-2

0.1 0 / 0.0% 0 / 0.0% 88.0% 96.7%
0.2 0 / 0.0% 0 / 0.0% 88.0% 96.7%
0.3 7 / 0.4% 4 / 0.2% 88.4% 97.1%
0.4 71 / 4.1% 45 / 2.6% 90.1% 98.3%
0.5 192 / 11.0% 129 / 7.4% 91.3% 98.7%
0.6 348 / 20.0% 260 / 15.0% 92.9% 98.9%
0.7 503 / 28.9% 399 / 22.9% 93.4% 99.1%
0.8 692 / 39.8% 580 / 33.4% 93.6% 99.2%
0.9 968 / 55.7% 850 / 48.9% 94.3% 99.3%
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Conclusions

Remarks: both selective prediction and superclass methods can improve
overall vehicle type classification accuracy.

Future directions: refine the studied methods; develop a combined ALPR
and FGVC system.
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