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Introduction

Scope: vehicle identification.

Approach: integrating Automatic License Plate Recognition (ALPR) with
Fine-Grained Vehicle Classification (FGVC).

Work in progress: enhance vehicle make classification through class
reduction and selective prediction.
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Data preparation

Original data: RodoSol-ALPR dataset.

Data preparation: preprocessing; image selection; annotations.
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Figure: Sample images from the RodoSol-ALPR dataset.
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Data preparation

VehicleMake: 9,553 images categorized into 29 classes.
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Figure: Distribution of classes in the VehicleMake dataset.
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Data preparation

Vehicle-Type: 9,553 images categorized into 29 classes.
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Figure: Examples of images from the VehicleMake dataset.
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Experiments and Results

Baseline experiment: evaluate four deep learning models for vehicle
make classification.

Methodology:
Models;
Split;

Data augmentation;

Training protocols;

Evaluation metrics.

Additional experiments: class reduction; selective prediction.
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Experiments and Results

Baseline experiment

Table: Global metrics on vehicle make task (averaged over five runs). Protocol
(p2) incorporates oversampling of minority classes, whereas (pI) does not.

Protocol Model Top-1 Top-2 Precision Recall F1

ViT bl6 55.3% 62.6% 63.9% 55.3% 57.4%

(1) ResNet-34 38.7% 47.8%  49.3% 38.7% 41.1%
EfficientNetV2 39.3% 49.1% 458%  39.3% 39.5%
MobileNetV3  40.9% 50.9%  522%  40.9% 43.5%

ViT bl6 654% 73.8% 53.0% 65.4% 56.8%

(p2) ResNet-34 49.4% 61.8% 33.9% 49.4% 36.9%
EfficientNetV2 49.4% 60.2% 31.7% 49.4% 33.8%
MobileNetV3  50.7% 61.8%  37.7%  50.7% 41.2%
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Experiments and Results

Class reduction (static and online)

Table: Class distribution considered Table: Global accuracies using superclass and
for the class reduction experiments. online superclass (averaged over five runs).
Class Images Method Top-1  Top-2
Chevrolet 1,054 Baseline 65.4% 73.8%
Fiat 1,189 Statlzlc class reductlf)n 73.4ZA> 85.0ZA>
Ford 1,662 Online class reduction  71.1% 81.5%
Honda 231
Hyundai 352
Jeep 97
Nissan 168
Renault 968
Toyota 1,273
Volkswagen 1,256
Others 1,303
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Experiments and Results

Class reduction (static and online)

Normalized Average Confusion Matrix
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(a) baseline experiment. (b) static class reduction.
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Figure: Average confusion matrices for the baseline experiment (a) and the static

class reduction experiment (b)
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Experiments and Results

Selective prediction

Table: Global accuracies and rejection rates using only softmax response rejection,
and combining it with online class reduction (averaged over five runs).

Method Min_imum R?ejected .Correct predifztions Top-1 Top-2
confidence images incorrectly rejected

Baseline - - - 65.4% 73.9%

0.1 0/ 0.0% 0/ 0.0% 65.4% 73.9%

0.2 37/ 31% 8 /23.0% 66.7% 75.0%

0.3 207 / 17.3% 62 /30.1% 71.9% 79.5%

Selective 0.4 382 / 32.0% 145 / 38.0% 77.0% 82.5%

Prediction 0.5 534 / 44.7% 239 / 44.8% 75.4% 79.7%

0.6 655 / 54.9% 328 / 50.1% 75.8% 78.5%

0.7 770 / 64.5% 426 / 55.3% 75.8% 77.0%

0.8 876 / 73.4% 523 / 59.7% 75.3% 75.8%

0.9 1013 / 84.8% 656 / 64.8% 71.3% 71.5%

0.1 0/ 0.0% 0/ 0.0% 71.1% 81.6%

S . 0.2 37/ 31% 10/ 0.9% 72.6% 83.0%

elective o o o o

Prediction 0.3 207 / 17.3% 71/ 5.9% 78.6% 87.6%

i 0.4 382 / 32.0% 159 / 13.4% 84.7% 91.8%

Online 0.5 534 / 44.7% 255 / 21.3% 90.2% 94.6%

Class 0.6 655 / 54.9% 345 / 28.9% 93.4% 95.7%

Reducing 0.7 770 / 64.5% 445 / 37.3% 95.8% 97.4%

0.8 876 / 73.4% 543 / 45.5% 94.3% 94.7%

0.9 1013 / 84.8% 677 / 56.7% 88.5% 88.8%
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Conclusions

Remarks: both selective prediction and class reduction methods can
improve overall vehicle make classification accuracy.

Future directions: refine the studied methods; develop a combined ALPR
and FGVC system.
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